
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

”Scaling Behavior of Physics Informed Neural Networks for
Solving Partial Differential Equations“

verfasst von / submitted by

Philipp Maximilian Möhl, B.Sc.

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2023 / Vienna, 2023

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

UA 066 821

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Masterstudium Mathematik

Betreut von / Supervisor: Univ.-Prof. Dr. Philipp Grohs

Abstract

This thesis provides a thorough introduction to the mathematical theory of learning

through finite samples of training data. It then presents neural networks, along with

gradient-based optimization methods, as a mathematical framework for solving learning

problems. The theory of mathematical learning through neural networks is further

extended with the addition of regularization techniques to introduce physics-informed

neural networks, an algorithm for the numerical solution of general partial differential

equations. The algorithm’s validity as an approximator is confirmed through an abstract

proof, offering insight into the theoretical underpinnings of the approach.

Numerical studies are empirically conducted to assess the scaling behavior of the algo-

rithm with respect to the amounts of training data samples on three different classes of

model problems with varying levels of complexity. These studies provide insight into the

effectiveness of the algorithm in approximating solutions to partial differential equations

and the role that the amount of training data plays in the approximation process.

i

Zusammenfassung

Diese Arbeit bietet eine gründliche Einführung in die mathematische Theorie des Ler-

nens durch endliche Proben von Trainingsdaten. Des Weiteren präsentiert sie neuronale

Netze zusammen mit Gradientenbasierten Optimierungsmethoden als mathematischen

Rahmen zur Lösung von Lernproblemen. Die Theorie des mathematischen Lernens

durch neuronale Netze wird durch die Hinzufügung von Regularisierungstechniken er-

weitert, um physikinformierte neuronale Netze einzuführen, einen Algorithmus für die

numerische Lösung allgemeiner partieller Differentialgleichungen. Die Gültigkeit des

Algorithmus als Approximator wird durch einen abstrakten Beweis bestätigt und gibt

Einblick in die theoretischen Grundlagen des Ansatzes.

Es werden numerische Studien empirisch durchgeführt, um das Skalierungsverhalten des

Algorithmus im Bezug auf die Mengen von Trainingsdatenproben auf drei verschiedene

Klassen von Modellproblemen mit unterschiedlicher Komplexität zu bewerten. Diese

Studien geben einen Einblick in die Effektivität des Algorithmus bei der Annäherung

von Lösungen partieller Differentialgleichungen und die Rolle, welche die Menge der

Trainingsdaten im Approximationsprozess spielt.

ii

Contents

1 Introduction 1

2 Foundations of Learning Theory 4
2.1 The Mathematical Learning Problem . 5
2.2 Learning from Samples . 7
2.3 Hypothesis Spaces and Target Functions 10
2.4 Error Decompositions . 13

3 Neural Networks 17
3.1 Definition . 17
3.2 Universality . 20
3.3 Hypothesis Space of Neural Networks . 25
3.4 Asymptotic Sample Behavior . 33
3.5 Stability and Regularization Methods . 41

4 PDEs as a Learning Problem 45
4.1 Framework . 45
4.2 PDEs as a Learning Problem . 49
4.3 PINNs as a Special Regularization Approach 51

5 Numerical Experiments 57
5.1 Convection Equation . 58
5.2 Heat Equation . 63
5.3 Burgers’ Equation . 68

6 Conclusion 72

Appendices 73
.1 Hyper-parameters used in Numerical Experiments 74

Bibliography 76

iii

1 Introduction

A partial differential equation (PDE) is a mathematical model that describes the behav-
ior of a physical system in terms of partial derivatives with respect to the space x ∈ U
and time t ∈ (0, T) variables. These equations can be expressed in a general form as

L(u) = 0, (1.1)

where u is the unknown function to be solved for and L is a differential operator that
describes the underlying physical laws.

To fully define the problem, auxiliary conditions such as initial and boundary conditions
are usually provided. These conditions are of the form{

u(·, 0) = φ on U

G(u) = ψ on ∂U × [0, T],
(1.2)

where G is a boundary operator.

PDEs have a wide range of applications in various fields, including engineering, physics,
and finance. However, finding solutions can be challenging, especially for high-dimensional
and complex systems. In recent years, machine learning techniques such as neural net-
works have been utilized as a new approach to solve PDEs (cf. for instance Lagaris [15],
Beck [63], Mishra [56] and Lye [61]), reformulating them as a learning problem. This
involves the representation of the problem stated by a PDE as a minimization task of
an error function

EZ(u) = E[L(u(X), Y)], (1.3)

where L is a loss function, and X and Y are random vectors with values in the input
and output domains of u, referred to as data Z = (X,Y). By taking m realizations
z = ((xi, yi))

m
i=1 of samples drawn according to the distribution of the data, the empirical

learning problem can be stated as the search for a minimizer of the empirical error
function

Ez(u) =
1

m

m∑
i=1

L(u(xi), yi), (1.4)

which approximates the error function. This approach opens up the possibility of ap-
plying numerical approximation methods over a hypothesis space of solvers.

For our purposes, we focus on neural networks as hypothesis spaces, who restate the
empirical learning problem as the search for minimizing network parameters θ. In par-
ticular, we study physics-informed neural networks (PINNs) as introduced by Raissi in
[53] and [57]. These networks have been shown to be a valid choice of approximators

1

1 Introduction

for PDEs under certain assumptions (cf. for instance Mishra [71], Ryck [73] and Shin
[62]). The algorithm utilizes equations (1.1) and (1.2) to extend the empirical learning
problem with regularizing error terms towards the objective function

Υreg(θ) =
1

mt

mt∑
i=1

|δti |2 +
1

md

md∑
i=1

|δdi |2 +
1

ms

ms∑
i=1

|δsi |2, (1.5)

with the error terms

δti = uθ(x
t
i, 0)− φ(xti)

δdi = L(uθ)(x
d
i)

δsi = G(uθ)(xsi)− ψ(xsi),

(1.6)

where (xti)
mt
i=1, (x

d
i)

md
i=1 and (xsi)

ms
i=1 are realizations drawn from independent samples of

random variables

Xt : Ω → U

Xd : Ω → U × (0, T)

Xs : Ω → ∂U × [0, T].

(1.7)

The inherent challenges in solving complex PDEs and limitations of traditional numer-
ical methods prompt the need for a thorough investigation into the performance and
scalability of PINNs. Our aim is to gain insight into the effectiveness of the algorithm
in approximating solutions to PDEs when presented with varying levels of complexity
and different amounts of training data samples.

In chapter 2, a thorough introduction to the theory of mathematical learning is provided.
Neural networks and their properties are briefly introduced in chapter 3. Chapter 4
gives a general definition of PDEs and introduces the algorithm of PINNs as a learning
strategy. In the last chapter numerical experiments are presented, which empirically
study scaling behaviors of the algorithm.

The prerequisites for this thesis include a good understanding of measure-theoretic prob-
ability theory and functional analysis. Familiarity with PDEs is beneficial but not
mandatory. Some of the references for these fields include Klenke [43], Ash [22], Billings-
ley [37], Aliprantis [32], Cannarsa [46], Rudin [10], Brezis [35] and Evans [34].

Notation. Let d, n, k ∈ N, let D ⊆ Rd, let u : D → R, let α = (α1, . . . , αd) ∈ Nd
0 be a

multi-index of order |α|, let (S, ρ) be a metric space and let p ∈ [1,∞]. We denote

• by N0 = N ∪ {0} the non-negative integers,

• by ⟨·, ·⟩ : Rd × Rd → R, ⟨x, y⟩ =
∑d

i=1 xiyi the inner product on Rd,

• by ∥ · ∥ : Rd → R≥0, ∥x∥ =
√

⟨x, x⟩ the Euclidean norm on Rd,

• by ∂u
∂xi

= uxi,
∂2u

∂xi∂xj
= uxixj ,

∂3u
∂xi∂xj∂xk

= uxixjxk
, etc. the partial derivatives of u,

2

• by Dαu(x) = ∂|α|u(x)

∂x
α1
1 ···∂xαd

d

the multi-index derivative of u,

• by Dku(x) = {Dαu(x)
∣∣|α| = k} ∈ Rdk the set of all partial derivatives of order k

of u,

• by B(S) the Borel σ-algebra of S,

• by B(D,Rn) the space of B(D)/B(Rn)-measurable functions,

• and by Lp(D,Rn) the Lebesgue spaces of B(D)/B(Rn)-measurable functions, where
we follow the convention of writing Lp(D), if n = 1.

Further, let p ∈ [1,∞), let (Ω,F ,P) be a probability space and let X : Ω → D be a
random vector, then we denote

• by PX = P ◦X−1 the push forward measure of X induced on the measurable space
(D,B(D)),

• by Lp(D,Rn;PX) the space of B(D)/B(Rn)-measurable functions f ∈ B(D,Rn),
which are integrable in the p-th power w.r.t. PX∫

D
∥f∥pdPX <∞, (1.8)

• and by Lp(Ω,Rn;P) the space of random vectors Y : Ω → Rn, which are integrable
in the p-th power w.r.t. P ∫

Ω
∥Y ∥pdP <∞. (1.9)

3

2 Foundations of Learning Theory

The following chapter presents a theoretical framework for the study of learning and
discusses some of its main properties. We might explain learning as a change in behav-
ior influenced by certain factors such as data and experience. Various scientific fields,
including cognitive psychology, neuroscience, computer science, engineering, and math-
ematics, are involved in studying the underlying processes and laws to gain more insight
into this phenomenon. Our context will be specifically machine learning, a sub-field of
mathematics and computer science, which is devoted to develop artificial learning meth-
ods and algorithms. Although there is no universally accepted definition, we consider
learning to be the acquisition of knowledge and new skills in our context. In machine
learning, we are typically facing one of three primary paradigms. Either we learn from
a given source of knowledge, what we wish to replicate, or we are confronted with un-
labeled data, where underlying structures or relationships must be discovered within,
or we learn from direct interactions with a given environment, while following a set of
predefined laws. We refer to these three situations as supervised learning, unsupervised
learning and reinforcement learning, which all differ in strategies of solving the underly-
ing learning task. Ongoing, we will work exclusively with the first situation, supervised
learning, as our matter is presented in the described format. However, one might not
ignore the others, as they lead to interesting and promising results themselves (cf. for
instance Goodfellow [41] and Fawzi [70]).

Typically, the source of knowledge in supervised learning tasks is presented in the form
of given data Z = (X,Y), where Z is a real-valued random vector on a probability space
(Ω,F ,P). We refer to X as the input, predictor or feature and Y as the output, response
or label. We are aiming for a way to understand the relationship between both, where
we have to keep in mind that their joint probability distribution P(X,Y) might be not
fully understood. In general, we are trying to generate a function f via some algorithm
such that

f(X) ≈ Y. (2.1)

The form of Y determines whether we are talking of a classification task or regression
task. A discrete random vector leads naturally to a need to classify inputs into the
resulting discrete values or classes. On the other hand, a continuous real-valued random
vector seeks an understanding of how Y continuously changes w.r.t changes inX, which is
called regression analysis. We will focus on the later case, where we measure performance
of our approach with the quadrature loss.

In this chapter, we attempt to develop a mathematical framework for supervised learn-
ing. While there is a variety of different approaches, we will follow the definitions and
formulations from Cucker [24], Poggio [27], Hastie [39] and Vapnik [18].

4

2.1 The Mathematical Learning Problem

2.1 The Mathematical Learning Problem

We will now formulate the general framework for supervised learning tasks and derive a
solution to it.

Definition 2.1.1 (The Mathematical Learning Problem). Let d, n ∈ N, D ⊆ Rd and
let X : Ω → D and Y : Ω → Rn be random vectors on some probability space (Ω,F ,P).
Define the error function w.r.t. the data Z = (X,Y) by

EZ : B(D,Rn) → [0,∞], f 7→
∫
Ω
∥f(X)− Y ∥2dP = E[∥f(X)− Y ∥2]. (2.2)

The mathematical learning problem defines the search for functions f ∈ B(D,Rn), such
that f minimizes the error function EZ .
More specifically, this form of EZ is called the least squares error and its integrand,
∥(f(X) − Y)∥2, is referred to as the quadrature loss for f on the data Z. While there
are other loss variations, we will strictly consider the former, as it possesses desirable
properties and is most commonly used in regression tasks. Note that in general the error
minimizing function is not unique.
Moving forward, whenever using the term data Z = (X,Y), we are referring to the
setting in the definition above, if not mentioned otherwise.

Definition 2.1.2 (Regression Function). Consider the mathematical learning problem
for some data Z = (X,Y), then we define the regression function w.r.t. Z by

f̂Z : D → Rn, x 7→ E[Y |X = x]. (2.3)

Intuitively speaking, f̂Z(x) is the average over the y coordinate in {x}×Y , which seems
to be a natural choice for minimizing the least squares error EZ . We will see in the next
Theorem, that it is in fact the best option we have.

Remark 2.1.3. Note that if Y ∈ L1(Ω,Rn;P), then the regression function exists and
is the PX-unique function, which fulfills∫

Ω
1{X∈D}E[Y |X]dP =

∫
Ω
1{X∈D}Y dP =

∫
D
f̂Z(x)dPX(x) (2.4)

for every D ∈ B(D) (cf. for instance Ash [22, Theorem 5.3.3 and Section 5.4]). There-
fore it holds that f̂Z(X) = E[Y |X].
Furthermore, in order to gain a deeper understanding of the regression function as a
predictor, we aim to examine its relationship with the output Y more closely. We as-
sume now that Y has finite variance and by applying the tower property for conditional
expectation to the random variable f̂Z(X)−Y , we can calculate expectation and variance
of the difference,

E[f̂Z(X)− Y] = E[E[Y |X]− Y] = 0

V ar[f̂Z(X)− Y] = E[∥f̂Z(X)− Y ∥2] = EZ(f̂Z).
(2.5)

5

2 Foundations of Learning Theory

Let us now prove that the regression function is the best choice of function f(X) ≈ Y ,
we are seeking to find.

Theorem 2.1.4 (Regression Function solves the Learning Problem). Let Z = (X,Y)
be some data and assume Y has finite variance. Let f̂Z be the regression function w.r.t.
Z, then for every function f ∈ L2(D,Rn;PX), the error EZ(f) is finite and decomposes
into

EZ(f) =
∫
D
∥f(x)− f̂Z(x)∥2dPX(x) + EZ(f̂Z) <∞. (2.6)

Further, for every f ∈ B(D,Rn)\L2(D,Rn;PX) the error is infinite,

EZ(f) = ∞. (2.7)

Proof. Let f ∈ L2(D,Rn;PX) and let Y be of finite variance as the output of some
data Z = (X,Y). These assumptions lead to both Y and the concatenation of f and X
being in L2(Ω,Rn;P), i.e., Y ∈ L2(Ω,Rn;P) and f(X) ∈ L2(Ω,Rn;P). We recall that
the form of the error of f in (2.2) is given as EZ(f) = E[∥f(X) − Y ∥2], which already
ensures the finiteness in this case.

We will proceed with the proof of the decomposition, where we will show that

EZ(f) = E[∥f(X)− f̂Z(X)∥2] + E[∥Y − f̂Z(X)∥2], (2.8)

where f̂Z is the regression function . We note that, as derived in a comment before,
f̂Z(X) = E[Y |X] is satisfied and f̂Z is the PX -unique function with this property.
Hence, we can calculate,

EZ(f) = E[∥f(X)− Y ∥2]
= E[∥f(X)− E[Y |X] + E[Y |X]− Y ∥2]
= E[∥f(X)− E[Y |X]∥2 + ∥E[Y |X]− Y ∥2 + 2⟨f(X)− E[Y |X],E[Y |X]− Y ⟩]
= E[∥f(X)− E[Y |X]∥2] + E[∥E[Y |X]− Y ∥2] + 2E[⟨f(X)− E[Y |X],E[Y |X]− Y ⟩]
= E[∥f(X)− f̂Z(X)∥2] + E[∥f̂Z(X)− Y ∥2] + 2E[⟨f(X)− E[Y |X],E[Y |X]− Y ⟩].

(2.9)

To conclude the step, we need to show next, that the last term of the decomposition
2E[⟨f(X)−E[Y |X],E[Y |X]−Y ⟩] vanishes. We further note that f(X) and E[Y |X] are
both σ(X)/B(Rn)-measurable, which enables us to use the tower property for conditional
expectations,

E[⟨f(X)− E[Y |X],E[Y |X]− Y ⟩]
= E[E[⟨f(X)− E[Y |X],E[Y |X]− Y ⟩|σ(X)]]

= E[⟨f(X)− E[Y |X],E[Y |X]− E[Y |X]⟩] = 0.

(2.10)

6

2.2 Learning from Samples

This finishes the proof of (2.8) and therefore, it holds that

EZ(f) = E[∥f(X)− f̂Z(X)∥2] + E[∥Y − f̂Z(X)∥2]

=

∫
D
∥f(x)− f̂Z(x)∥2dPX(x) + EZ(f̂Z).

(2.11)

Moving forward, we assume that f ∈ B(D,Rn)\L2(D,Rn;PX), which implies that
f(X) /∈ L2(Ω,Rn;P). We again calculate the error of f

EZ(f) = E[∥f(X)− Y ∥2]
= E[∥f(X)− Y ∥2 + ∥Y ∥2]− E[∥Y ∥2]

≥ 1

2
E[∥f(X)− Y ∥2 + ∥Y ∥2] + E[∥f(X)− Y ∥∥Y ∥]− E[∥Y ∥2]

=
1

2
E[(∥f(X)− Y ∥+ ∥Y ∥)2]− E[∥Y ∥2]

≥ 1

2
E[(∥f(X)∥2]− E[∥Y ∥2] = ∞,

(2.12)

where we utilized in the first inequality the property that x2 − 2xy + y2 = (x− y)2 ≥ 0
holds for all x, y ∈ R, in the last line the triangle inequality and the final result is a
consequence of the assumptions made on Y and f(X), thus completing proof.

Remark 2.1.5. Theorem 2.1.4 lets us decompose the error EZ(f) into two components.
On the right-hand side, the error EZ(f̂Z) is independent of the function f . As a result,
f̂Z minimizes EZ and satisfies the mathematical learning problem under the given as-
sumptions. Furthermore, EZ(f̂Z) constitutes a lower bound on the error for functions
f ∈ B(D,Rn).

From now on, when considering some data Z = (X,Y), we will assume Y to have finite
variance, or more precisely, Y ∈ L2(Ω,Rn;P).

2.2 Learning from Samples

Now that we found a theoretical solution to the mathematical learning problem, we need
to raise the question of whether it is applicable in practise. In most learning situations,
we do not possess the knowledge of the distribution of both random vectors X and Y of
our data Z = (X,Y), and explicit calculation of the conditional expectation may not be
feasible. Therefore, we cannot always determine the regression function f̂Z . However,
we are usually equipped with random samples from the data, which we want to use to
approximate the regression function.

To formulate this, we will extend our framework developed earlier with a new error
function for samples.

7

2 Foundations of Learning Theory

Definition 2.2.1 (The Mathematical Learning Problem, Sample Version). Let m ∈ N,
let Z = (X,Y) be some data, and let

z = ((xi, yi))
m
i=1 ∈ (D × Rn)m (2.13)

be realizations ofm samples independently drawn according to the distribution of Z. More
precisely, let ((Xi, Yi))

m
i=1 be m independent and identically distributed (i.i.d.) copies of

(X,Y), denoted by
Z = ((Xi, Yi))

m
i=1 : Ω → (D × Rn)m, (2.14)

then there exists an ω ∈ Ω, such that

Z(ω) = z. (2.15)

We define the sample version of the mathematical learning problem for empirical real-
izations z as the search for functions f ∈ B(D,Rn) that result in small errors EZ(f),
utilizing only the partial knowledge of z.

For the sake of notation we will implicitly include the number of samples m when we
write Z.

Remark 2.2.2. We showed in Theorem 2.1.4, that the regression function minimizes
the error function EZ , thus the sample version of the learning problem can be rewritten.
In essence we are seeking for a function f ∈ B(D,Rn) to approximate the regression
function, given samples of data Z. Or more specifically, while utilizing only given partial
knowledge z, we are searching for f , such that

E[∥f(X)− f̂Z(X)∥2] (2.16)

is small with high probability.

Remark 2.2.3. In Definition 2.2.1, note that we are always able to find i.i.d. copies
drawn from the distribution of Z = (X,Y), by considering the m-fold product space
(Ωm,F⊗m,P⊗m), constructed by the probability space (Ω,F ,P).
In fact, we can construct such copies by setting

((Xi, Yi))
m
i=1 = ((X ◦ πi, Y ◦ πi))mi=1, (2.17)

where the functions πi : Ω
m → Ω project every ω = (ωj)

m
j=1 ∈ Ωm onto its i-th coordinate

πi(ω) = ωi. Identifying the given data as (X,Y) = (X ◦ π1, Y ◦ π1) on the product space
(Ωm,F⊗m,P⊗m) leads to the requested construction.

To extend the structure of the new learning problem, we introduce a new error function,
the empirical error function. This is particularly needed because, in general, we do not
understand the distribution of the data Z and only have access to realizations of random
samples Z. The empirical error leverages these realizations to approximate the error EZ ,
which can no longer be directly measured.

8

2.2 Learning from Samples

Definition 2.2.4 (Empirical Error). Let m ∈ N and let Z be m i.i.d. copies of some
data Z = (X,Y). For every function f ∈ B(D,Rn), we define the empirical error of f
w.r.t. the samples Z by

EZ : Ω× B(D,Rn) → [0,∞)

(ω, f) 7→ 1

m

m∑
i=1

∥f(Xi(ω))− Yi(ω)∥2.
(2.18)

We also refer to the empirical error with the square loss as the mean squared error.

Remark 2.2.5. Note that in the definition of the empirical error, if we fix a function
f ∈ B(D,Rn), the resulting function

EZ(f) : Ω → [0,∞), ω 7→ EZ(ω)(f) = Ez(f) (2.19)

is F/B([0,∞))-measurable as a composition of measurable functions and therefore a
random variable.

In the following, we aim to demonstrate the validity of the empirical error as an approx-
imation of the error. Specifically, we verify that as the number of samples m increases,
the empirical error EZ is close to the error EZ , with high probability. Utilizing the law
of large numbers, we demonstrate the convergence and provide a result on the rate.

Lemma 2.2.6 (Approximation of the Error). For f ∈ L2(D,Rn;PX) fixed, as the
number of samples m increases, the empirical error EZ(f) converges P-almost surely to
the error EZ(f),

P(lim
m→∞

EZ(f) = EZ(f)) = 1. (2.20)

Proof. Let m ∈ N and let Z = ((Xi, Yi))
m
i=1 be m i.i.d. copies of some data Z = (X,Y).

Define the functions (ξi)
m
i=1 by

ξi : Ω → [0,∞), ω 7→ ∥f(Xi(ω))− Yi(ω)∥2. (2.21)

As compositions of measurable functions, ξi are F/B([0,∞))-measurable and therefore
random variables. Further, from construction of ((Xi, Yi))

m
i=1 and of (ξi)

m
i=1, they are

i.i.d. as well. As f ∈ L2(D,Rn;PX) and by our general assumption that Y has finite
variance, it holds that

E[ξi] = E[∥f(Xi)− Yi∥2] = E[∥f(X)− Y ∥2] = EZ(f) <∞. (2.22)

Therefore, we can apply the law of large numbers to the random variables ξi and show
that the claim holds,

P(lim
m→∞

EZ(f) = EZ(f)) = P(lim
m→∞

1

m

m∑
i=1

ξi = E[ξ1]) = 1. (2.23)

9

2 Foundations of Learning Theory

Theorem 2.2.7 (Approximation Rates of the Error). Let f ∈ L2(D,Rn;PX) be fixed
and assume the variance of ∥f(X)− Y ∥2 to be finite,

σ2 = V ar(∥f(X)− Y ∥2) <∞. (2.24)

Then for any ϵ > 0, it holds that

P(|EZ(f)− EZ(f)| ≥ ϵ) <
σ2

mϵ2
. (2.25)

Further, if there exists a M > 0 such that ∥f(X)− Y ∥2 ≤M holds P-a.s., then for any
ϵ > 0, it holds that

P(|EZ(f)− EZ(f)| ≥ ϵ) < 2e
− mϵ2

2(σ2+1
3Mϵ) . (2.26)

Proof. To show the results, we note that for the expectation and the variance of the
empirical error of f , it holds that

E[EZ(f)] =
1

m

m∑
i=1

E[∥f(Xi)− Yi∥2] = E[∥f(X)− Y ∥2] = EZ(f)

V ar(EZ(f)) =
1

m2

m∑
i=1

V ar(∥f(Xi)− Yi∥2) =
σ2

m
<∞.

(2.27)

To proof the first result, we can now apply Chebychevs’s inequality and yield the bound.
Extending the assumptions with ∥f(X) − Y ∥2 ≤ M P-a.s. lets us use the Bernstein
inequality, which proofs the second result.

Remark 2.2.8. Note that the second bound in Theorem 2.2.7 is superior only for m
sufficiently large. For further details, refer to Cucker [24].

2.3 Hypothesis Spaces and Target Functions

In previous sections, a theoretical framework for describing learning problems was devel-
oped and a structure was given to the sampling situations in which most of them occur.
This section shifts focus to solution strategies, by restricting the set of allowed functions
to a subspace of B(D,Rn). By defining the search space in this way, it becomes more
feasible to design a search algorithm. Moreover, if the subspace only contains functions
dependent on a set of learnable parameters, the learning problem is greatly simplified
compared to searching in the full space of functions, B(D,Rn).

The introduction of the concept of hypothesis spaces provides the framework for working
with specific solvers. It should be noted that the regression functions previously defined,
as well as the functions that minimize the empirical error given random samples, are typ-
ically not included in an arbitrarily chosen hypothesis space. This requires the definition
of a new target to be learned.

10

2.3 Hypothesis Spaces and Target Functions

Recall that L∞(D,Rn) is the Banach space of bounded functions f ∈ B(D,Rn), equipped
with the supremum norm,

∥f∥∞ = sup
x∈D

∥f(x)∥. (2.28)

Definition 2.3.1 (Hypothesis Space). Let H ⊆ L∞(D,Rn) be a compact and not-empty
subspace, then we call H a hypothesis space.

We will now define the targets to learn in a hypothesis space, when given some data
Z = (X,Y).

Definition 2.3.2 (Target Functions). Let H be a hypothesis space, we define a target
function f̂H, as a function which minimizes the error EZ(f) over H, that means

f̂H ∈ argmin
f∈H

EZ(f). (2.29)

Definition 2.3.3 (Empirical Target Functions). Let H be a hypothesis space and let

z = Z(ω) (2.30)

be realizations of m samples independently drawn according to the distribution of Z, we
define an empirical target function f̂H,z, as a function which minimizes the empirical
error Ez(f) over H, that means

f̂H,z ∈ argmin
f∈H

Ez(f). (2.31)

Lemma 2.3.4 (Existence of Target Functions). Let H be a hypothesis space, then there
exists a target function f̂H and an empirical target function f̂H,z, which minimize the
errors EZ and Ez over H, respectively.

Proof. For every f ∈ H ⊆ L∞(D,Rn), we have that f ∈ L2(D,Rn;PX), as PX is a finite
measure. As Y is assumed to have finite variance, it also holds that Y ∈ L2(Ω,Rn;P).
Restricting the error function to the hypothesis space H

EZ
∣∣
H : H → [0,∞), f 7→ EZ(f), (2.32)

allows us to show that it is a continuous map, by applying Cauchy-Schwarz and the
inverse triangle inequality. The same can be shown for the empirical error function,
when restricted to H

Ez
∣∣
H : H → [0,∞), f 7→ Ez(f), (2.33)

by applying basic principles. Noting that H is compact, this proofs the claim, as EZ
∣∣
H

and Ez
∣∣
H are continuous maps between metric spaces (H, ∥.∥∞) and ([0,∞), |.|), which

always attain a minimum on compact sets.

Remark 2.3.5. We note that a target function of a hypothesis space does not generally
have to be unique. However,if H is assumed to be convex, a uniqueness result can be

11

2 Foundations of Learning Theory

shown (cf. Cucker [24, section 7]). Also note that a hypothesis space does generally not
include the regression function f̂Z , which would simplify the approach.

In Remark 2.2.5, we noted that with our construction of the empirical error, it can be
seen as a random variable for fixed f ∈ B(D,Rn). A similar concept applies to the
empirical target functions. We extend the definition of the empirical target function in
the same manner as

f̂H,Z : Ω → H, ω 7→ f̂H,Z(ω) = f̂H,z (2.34)

to conform with the definition of the empirical EZ . We will further show, that we can
construct f̂H,Z in a way, which is indeed a random variable again.

Lemma 2.3.6 (Measureability of the Empirical Target Functions). Let H be a hypothesis
space. Then there exists a F/B(H)-measurable function, which minimizes EZ(ω) for every
ω ∈ Ω.

Proof. First, note that any compact metric space is separable. Therefore, the metric
space (H, ∥.∥∞) is as well. Further, we established, that the empirical error function for
a fixed function f ∈ H,

EZ(f) : Ω → [0,∞), ω 7→ EZ(ω)(f) (2.35)

is a random variable and in particular F/B([0,∞))-measurable and in the proof of
Lemma 2.3.4, we already commented on the continuity of

EZ(ω) : H → [0,∞), f 7→ EZ(ω)(f) (2.36)

for any ω ∈ Ω. Being measurable in the first and continuous in the second argument,
lets us apply the Measurable Maximum Theorem (cf. for instance Aliprantis [32, an
adaption of Theorem 18.9]) to the map

Ω×H ∋ (ω, f) 7→ EZ(ω)(f) ∈ [0,∞), (2.37)

which states that the set-valued function,

Ω ∋ ω 7→ argmin
f∈H

EZ(ω)(f) (2.38)

admits a measurable selector. That means, it exists a F/B(H)-measurable function

f̂H,Z : Ω → H, (2.39)

such that for every ω ∈ Ω,

f̂H,Z(ω) ∈ argmin
f∈H

EZ(ω)(f), (2.40)

which completes the proof.

12

2.4 Error Decompositions

In the following, we will adopt the construction of the regression function f̂H,Z as outlined
in Lemma 2.3.7.

2.4 Error Decompositions

To establish a more thorough understanding of the role that sampling plays in the
hypothesis space selection process, it is necessary to decompose the error. This will
reveal the delicate balance between the number of samples and the diversity of the
hypothesis space, which is commonly referred to as the bias-variance trade-off. Further,
we will introduce the concept of algorithms and derive another error decomposition, that
arises for models generated by them. This will aid in the discussion of the generalization
capabilities of algorithms, which refers to the ability to learn from samples and perform
well on out-of-sample data. Additionally, the role of the optimization algorithm in the
process will also be explored. These considerations are crucial for achieving a well-
performing model that can generalize to new, unseen data.

Proposition 2.4.1 (Error Decomposition 1). Let H be a hypothesis space. For the
empirical target function f̂H,Z , we can decompose the error into

EZ(f̂H,Z) = ϵsamp + ϵappr + ϵirr (2.41)

with

ϵsamp := EZ(f̂H,Z)− EZ(f̂H) ≥ 0

ϵappr := EZ(f̂H)− EZ(f̂Z) ≥ 0

ϵirr := EZ(f̂Z) ≥ 0.

(2.42)

Proof. In Lemma 2.3.6, we established the empirical target function as a random vari-
able. Therefore, the map

EZ(f̂H,Z) : Ω → [0,∞), ω 7→ EZ(f̂H,Z(ω)) = E[∥f̂H,Z(ω)(X)− Y ∥2] (2.43)

is too. The decomposition is a simple rewriting of this random variable.

Remark 2.4.2. In the previous Proposition 2.4.1, we introduced the three terms ϵsamp,
ϵappr and ϵirr, which are named the sample error or variance, the approximation error or
squared bias and the irreducible error, with only the term ϵsamp being a random variable
again. We remember, that the last term, the irreducible error, is in fact the lower bound
on the error function EZ . It is also independent of the choice of the hypothesis space and
the random samples and can not be avoided, hence irreducible. For the other two terms,
they can be optimized. This lets us split up the learning problem of finding a small error
EZ(f̂H,Z), into the two minimization problems of ϵsamp and ϵappr. While the first is given
on the hypothesis space H, the second is independent of the choice of samples.

13

2 Foundations of Learning Theory

Definition 2.4.3 (Covering Numbers). Let H be a hypothesis space, let δ > 0 and define
the δ-ball around f ∈ H by

Bδ(f) = {g ∈ H | ∥f − g∥∞ < δ}. (2.44)

We define the δ-covering number N (H, δ) to be the minimal amount of δ-balls needed to
cover H,

N (H, δ) = argmin
k∈N

{∃f1, ..., fk ∈ H :
k⋃

i=1

Bδ(fi) ⊇ H}. (2.45)

Compactness of H leads to a finite δ-covering numbers, for every δ. Our assumptions
on the metric space (H, ∥.∥∞) are therefore implying, N (H, δ) <∞.

Theorem 2.4.4 (Sample Error Bounds). Let H be a hypothesis space, and let M > 0.
Assume that for every f ∈ H it holds that P-a.s.,

∥f(X)− Y ∥ ≤M (2.46)

and further, let
σ2 = V ar(∥f(X)− Y ∥2). (2.47)

Then, for every ϵ > 0,

P(EZ(f̂H,Z)− EZ(f̂H) ≤ ϵ) ≥ 1− 2N (H, ϵ

16M
)e

− mϵ2

8(4σ2+1
3M2ϵ) . (2.48)

Proof. See Cucker, Theorems C in [24].

Under the same setting as in Theorem 2.4.4, we can transform the statement to the
following Lemma.

Lemma 2.4.5. Let ϵ, δ > 0, if the number of samples satisfies

m ≥
8(4σ2 + 1

3M
2ϵ)

ϵ2

[
ln(2N (H, ϵ

16M
)) + ln(

1

δ
)

]
, (2.49)

then it holds that
P(EZ(f̂H,Z)− EZ(f̂H) ≤ ϵ) ≥ 1− δ. (2.50)

Proof. Directly from Theorem 2.4.4.

For further improvements of the results presented in Theorem 2.4.4 and Lemma 2.4.5,
please refer to Cucker [24, Chapter 6], where the covering number is further estimated.
Similar work can be done on the approximation error. To get an overview of existing
bounds, please see Cucker [24, Chapter II].

Remark 2.4.6 (Bias-Variance Trade-off). For a fixed hypothesis space H, the approxi-
mation error ϵappr is constant, and the sample error is small with increasing probability

14

2.4 Error Decompositions

when the number of samples increases, as seen in Theorem 2.4.4. On the other side, for
a fixed number of samples m, the approximation error can only decrease when enlarging
the hypothesis space H, while the sample error typically increases. This is often called
overfitting on the samples. As a result, there is a trade-off between the choice of the
number of samples and the hypothesis space, which is called the bias-variance trade-off.

In the study of machine learning and related literature, the term algorithm is used to
describe a procedure for mapping given realizations of random samples z to a func-
tion in a specified hypothesis space H. Our goal is it to find an algorithm, which has
small empirical error w.r.t. z. This is the same, as searching for an algorithm, which
approximates the empirical target function on the hypothesis space fH,z.

In context of algorithms, the empirical error is commonly referred to as the in-sample
error or the training error, and it measures the error of the algorithm when applied
to the so-called training set, z. As noted already, we are typically not equipped with
the distribution of the data Z, so while the empirical error is computable a posteriori,
the error itself is not.. While we use the empirical error as an approximation for the
error, this might not always be a good indication of the performance on the overall data,
especially for relatively small amounts of samples. Therefore, it is common practise
to measure the generalization capabilities of the algorithm by measuring the empirical
error on other realizations of samples that were not included in z, often referred to as
out-of-sample error or the validation error.

Assuming that we have an algorithm that generates the empirical target function (or
functions close to it, in the sense of the distance between their empirical errors), the
optimization problem comes down to finding a good balance between the bias and vari-
ance, as described in Remark 2.4.6. In this case, we can adjust the number of samples
and choice of hypothesis space, by measuring the validation error as an approximation
of the error EZ(fH,Z).

Definition 2.4.7 (Learning Algorithm). Let H be a hypothesis space, define a learning
algorithm on H as a measurable map

A :
⋃
m∈N

(D,Rn)m → H, z 7→ A(z) (2.51)

and call A(z) a model generated on z.

Remark 2.4.8. Note that the model produced by the learning algorithm can be viewed
as a random variable, denoted by

Ω ∋ ω 7→ A(Z(ω)) = A(z). (2.52)

To adhere with the developed theory, we will therefore use A(Z). Furthermore, for the
sake of readability, we denote by

fA,Z = A(Z) (2.53)

the model generated by learning algorithm A on random samples Z.

15

2 Foundations of Learning Theory

Let us now derive another decomposition of errors, where we investigate on the error of
an actual model, which was generated by an algorithm.

Proposition 2.4.9 (Error Decomposition 2). Let H be a hypothesis space, let A be an
algorithm on H. Then it holds that

EZ(fA,Z)− EZ(f̂Z) ≤ ϵopt + 2ϵgen + ϵappr (2.54)

with

ϵopt := EZ(fA,Z)− EZ(f̂H,Z) ≥ 0

ϵgen := sup
f∈H

|EZ(f)− EZ(f)| ≥ 0

ϵappr := EZ(f̂H)− EZ(f̂Z) ≥ 0.

(2.55)

Proof. The error bound can be computed by decomposing and bounding each error term,
by the defined ϵopt, ϵgen and ϵappr,

EZ(fA,Z)− EZ(f̂Z)
= EZ(fA,Z)− EZ(fA,Z)︸ ︷︷ ︸

≤ϵgen

+ EZ(fA,Z)− EZ(f̂H)︸ ︷︷ ︸
≤ϵopt

+ EZ(f̂H)− EZ(f̂H)︸ ︷︷ ︸
≤ϵgen

+ EZ(f̂H)− EZ(f̂Z)︸ ︷︷ ︸
=ϵappr

≤ ϵopt + 2ϵgen + ϵappr.

(2.56)

Remark 2.4.10. In the previous Proposition 2.4.9, we introduced two new terms ϵopt
and ϵgen, which we call optimization error and generalization error. Again, only one term
is a random variable, the optimization error. We discussed already in Remark 2.4.6 how
the approximation error can be optimized and that enlarging the hypothesis space H will
decrease it, while the sample error increases. Similar behavior can be observed with the
generalization error, which cannot be controlled for a too-big H and decreases with a
growing number of samples, leading to another form of the bias-variance trade-off. As
stated earlier, the best choice of an algorithm is the empirical target function, and thus
the definition of the optimization error is natural and decreases with an improvement
in the choice of the algorithm in that sense. Note that the optimization error primarily
depends on the choice of the algorithm. However, with an enlarged hypothesis space, it is
typically harder to find good algorithms and computationally more expensive to train them
with an increasing number of samples. In Chapter 3 we will see gradient-based methods
as an example of such algorithms, giving more structure to the problem of computational
effort. For further investigations into the different error terms, see Berner [69, Chapter
1] and Anthony [19].

16

3 Neural Networks

This chapter is devoted to give a brief introduction to the wide field of neural networks
and discuss some of their most important properties and limitations. Additionally, we
will see with the hypothesis space of neural networks a concrete example of how we
optimize the choice of aproximators given some samples. The motivation behind neural
networks has its origin in the study of human brains, where we consider biological neural
networks. A first step towards describing these structures, was done by McCulloch and
Pitts [1] in 1943, who proposed a computational model for a biological neuron. The
McCulloch and Pitts neuron, is defined by

Rd ∋ x 7→ 1R+(
d∑

i=1

wixi − θ), (3.1)

where d ∈ N is the input dimension and wi, θ ∈ R are the weights and the threshold,
which must be surpassed to signal an activation from the neuron. By allowing the output
of neurons to form the input of another one, we connect these functions into a network.
This mathematical structure laid the ground for the neural networks we are nowadays
working with.

Recently, neural networks and deep learning (cf. Goodfellow [41]) have gained much
attention due to their success in a variety of fields, such as games (cf. for instance Silver
[54] and Berner [55]), image classification (cf. for instance Rombach [72] and Dosovitskiy
[64]), in natural language application (cf. for instance Brown [60] and Thoppilan [74]),
and in the natural sciences (cf. for instance Jumper [65]) and have a central position in
modern machine learning (cf. for instance LeCun [47]). In this chapter, we will focus on
the simpler models, fully-connected feedforward neural networks, which are also called
multilayer perceptrons (cf. Rosenblatt [2]).

3.1 Definition

We will begin by presenting the definition of neural networks and providing a detailed
explanation of their components. To aid understanding, we will use visualizations to
make the topic more concrete.

Definition 3.1.1 (Fully-Connected Feedforward Neural Network). Let d, L ∈ N. A
(fully-connected feedforward) neural network with input dimension d and L layers is

17

3 Neural Networks

determined by its parameters θ, a sequence of matrix-vector tuples

θ = ((W (ℓ), b(ℓ)))Lℓ=1 ∈
L

ℓ=1

(RNℓ×Nℓ−1 ,RNℓ), (3.2)

where N = (N0, . . . , NL) ∈ NL+1 and N0 = d. The numbers Nℓ are called neurons in
the ℓ-th layer, while we refer to the 0-th layer, as the input layer and L-th layer as the
output layer. For ℓ ∈ {1, . . . , L − 1}, we refer to the ℓ-th layer also as the ℓ-th hidden
layer. We define the number of parameters as

p(N) :=

L∑
ℓ=1

NℓNℓ−1 +Nℓ, (3.3)

which lets us represent the parameters as a vector in Rp(N). Given a function ϱ : R → R,
we define the associated realization function by

RN,ϱ : Rd × Rp(N) → RNL , (x, θ) 7→ Φ(L)(x, θ), (3.4)

where

Φ(0)(x, θ) := x

Φ(ℓ)(x, θ) := ϱ(W (ℓ)Φ(ℓ−1)(x, θ) + b(ℓ)), ℓ ∈ {1, . . . , L− 1} and

Φ(L)(x, θ) :=W (L)Φ(L−1)(x, θ) + b(L),

(3.5)

and ϱ is understood to act component-wise and is referred to as the activation function.
We refer to a = (N, ϱ) as the network architecture and we further call the matrices
W (ℓ) ∈ RNℓ×Nℓ−1 and vectors b(ℓ) ∈ RNℓ, weight matrices and bias vectors. The depth
and width of an architecture are given by the number of layers L and the maximal number
of neurons ∥N∥∞. We call an architecture deep, if L > 2 and call it shallow if L = 2.
Moreover, we refer to the architecture determining layers L, activation function ϱ and
neurons N, as hyper-parameters.

The term neural network will always refer to the Definition 3.1.1 in this thesis. It is
noteworthy that a neural network with L = 1 layers is equivalent to an affine linear
functions.

Remark 3.1.2 (Activation Functions). We will see later, that in fact all continuous
functions, which are neither linear nor a polynomial, might be a valid choice for activa-
tion functions. However, in practise there are only a few that are used and researched on
frequently. To give a small overview, we present two of the most common ones, which
describe an overall class of activation functions, by including simple modifications. The
rectified linear unit (ReLU) function, is defined by the map

R ∋ x 7→ ϱR(x) := max{0, x} (3.6)

18

3.1 Definition

x1

x2

x3

x4

x5

x6

Input
layer

Φ
(1)
1

Φ
(1)
2

Φ
(1)
3

Φ
(1)
4

Φ
(1)
5

Φ
(1)
6

Φ
(1)
7

Φ
(1)
8

1st hidden
layer

Φ
(2)
1

Φ
(2)
2

Φ
(2)
3

Φ
(2)
4

Φ
(2)
5

Φ
(2)
6

Φ
(2)
7

Φ
(2)
8

2nd hidden
layer

Φ
(3)
1

Φ
(3)
2

Φ
(3)
3

Φ
(3)
4

Φ
(3)
5

Φ
(3)
6

Φ
(3)
7

Φ
(3)
8

3rd hidden
layer

Φ
(4)
1

Φ
(4)
2

Φ
(4)
3

Φ
(4)
4

Φ
(4)
5

Φ
(4)
6

4th hidden
layer

y1

y2

Output
layer

Figure 3.1: Illustration of a neural network with 5 layers and neurons N=(6,8,8,8,6,2).

and sigmoidal functions are continuous functions f : R → R, such that

lim
x→−∞

f(x) = 0 and lim
x→∞

f(x) = 1. (3.7)

Common modified forms of the two mentioned functions are the parametric ReLU func-
tion, R ∋ x 7→ ϱR,a(x) := max{ax, x} for some parameter a > 0 and the hyper-

bolic tangent function, tanh(x) = ex−e−x

ex+e−x , which has limits lim
x→−∞

tanh(x) = −1 and

lim
x→∞

tanh(x) = 1.

Every neural network admits an underlying directed acyclic graph G = (V,E), depending
on its architecture a = (N, ϱ). The set of vertices V is given by

V = {Φ(ℓ)
i | ℓ ∈ {0, . . . , L}, i ∈ {1, . . . , Nℓ}} (3.8)

and the set of edges E by

E = {(Φ(ℓ)
i ,Φ

(ℓ+1)
j) |Φ(ℓ)

i ,Φ
(ℓ+1)
j ∈ V }. (3.9)

An illustration of a resulting graph can be seen in Figure 3.1. Further, a vertex Φ
(ℓ)
i

can be interpreted as the i-th neuron in the ℓ-th layer and the edges are describing
the computation flow through the network. Note that the recursive definition of the
realization function of a neural network, describes a graph of this form, with edge weights

19

3 Neural Networks

1

Φ
(ℓ−1)
1

Φ
(ℓ−1)
2

Φ
(ℓ−1)
Nℓ−1

∑∣∣∣∣∣ ϱ

b(ℓ)

W
(ℓ)
j,1

W
(ℓ)
j,2

W
(ℓ)
j,Nℓ−1

1

Φ
(ℓ)
j

Figure 3.2: Illustration of the bias-free computation between layers, for ℓ ∈ {1, . . . , L−1}
and j ∈ Nℓ. For ℓ = L, the connection between the 1’s will not appear.

corresponding to the weight matrix, if we neglect the bias vectors. In fact we can always
write a neural network without bias vectors, by refining the input and parameters to

x→
[
x
1

]
, (W (ℓ), b(ℓ)) →

[
W (ℓ) b(ℓ)

0 1

]
(3.10)

for every ℓ ∈ {1, . . . , L− 1} and the parameters of the last layer to

(W (L), b(L)) →
[
W (L) b(L)

]
. (3.11)

In this manner, we can visualize the computation flow between vertices as seen in Figure
3.2.

3.2 Universality

Under certain weak conditions on the activation function, shallow and deep neural net-
works are able to approximate continuous functions on compact subset of Rd arbitrarily
precise. This forms one of the most important approximation properties for neural net-
works, called universality, which was first shown by Hornik [7] and Cybenko [6] and
points great interest towards the space of neural networks. While there are multiple
forms of the statement (cf. for instance Leshno [11] and Scarselli [16]), we will focus on
the format from Cybenko [6].

Remark 3.2.1 (Setting of Approximation Space). In the sense of functional analysis,
to speak of approximation results, we need to equip the space of goal functions with a

20

3.2 Universality

topology. We are especially interested in the space of continuous functions C(K) for a
compact K ⊂ Rd, which we endow with the uniform norm, ∥.∥∞. Note that in this
setting, by the representation theorem of Riesz (cf. Rudin [31, Theorem 6.19]), the
topological dual space of C(K) is the space of all signed Borel measures on K, which we
will denote by M(K).

Definition 3.2.2 (Discriminatory Functions). Let d ∈ N and let K ⊂ Rd be compact.
We call a continuous function f : R → R discriminatory w.r.t. K, if the only µ ∈ M(K)
for which ∫

K
f(w · x− b)dµ(x) = 0 (3.12)

holds for every w ∈ Rd and every b ∈ R, is µ = 0.

We already introduced two examples of discriminatory functions in Remark 3.1.2. In
fact, we will see in the following two Lemmas 3.2.4 and 3.2.5, that the ReLU function
and each sigmoidal function are discriminatory.

Proposition 3.2.3. Let d ∈ N and let K ∈ Rd be compact. If for a measure µ ∈ M(K)
it holds, that for every w ∈ Rd and every b1, b2 ∈ R∫

K
1[b1,b2](w · x)dµ(x) = 0, (3.13)

then µ = 0.

Proof. Let f : R → R be a step function, i.e. we can write the function for every x ∈ R
as

f(x) =
n∑

i=0

αi1Ai(x), (3.14)

where n ∈ N, αi ∈ R and Ai are intervals on R. As each interval Ai in R is either closed,
i.e. Ai = [bi, bi+1] for some bi, bi+1 ∈ R, or can be expressed as the union of a sequence
of closed intervals, and by the monotone convergence theorem, it holds for every interval
Ai ∈ R and every w ∈ Rd that ∫

K
1Ai(w · x)dµ(x) = 0, (3.15)

and so by linearity of the integral we can calculate,∫
K
f(w · x)dµ(x) =

n∑
i=0

αi

∫
K
1Ai(w · x)dµ(x) = 0. (3.16)

Further, every bounded continuous function g ∈ C(R) ∩ L∞(R) is the limit of step
functions and so by the dominated convergence theorem it holds for every w ∈ Rd that∫

K
g(w · x)dµ(x) = 0. (3.17)

21

3 Neural Networks

This holds especially for the bounded continuous functions sin and cos and therefore,

0 =

∫
K
cos(w · x) + i sin(w · x)dµ(x) =

∫
K
eiw·xdµ(x). (3.18)

And so the Fourier transform of the measure µ must be 0, which can only happen if we
already had µ = 0 (cf. Rudin [10, p. 176]).

With the Proposition 3.2.3 we can now go on to show the two Lemmas, which will show
that the ReLU function and sigmoidal functions are discriminatory.

Lemma 3.2.4 (Rectified Linear Unit Function is Discriminatory). Let d ∈ N and let
K ∈ Rd be compact. Then the function defined by

R ∋ x 7→ ϱR(x) := max{0, x} (3.19)

is discriminatory w.r.t. K.

Proof. For every w ∈ R and b1, b2 ∈ R, b1 < b2, we define the function Iw,b1,b2 : R → R
by

Iw,b1,b2(x) := ϱR(wx−wb1+1)−ϱR(wx−wb1)−ϱR(wx−wb2)+ϱR(wx−wb2−1). (3.20)

This function can be rewritten to

Iw,b1,b2(x) =

0 if x ≤ b1 − 1
w

w(x− b1 +
1
w) ≤ 1 if b1 − 1

w < x < b1

1 if b1 ≤ x ≤ b2

w(1
w − x− b2) ≤ 1 if b2 < x < b2 +

1
w

0 if x ≥ b2 +
1
w ,

(3.21)

which makes it obvious, that for every x ∈ R, lim
w→∞

Iw,b1,b2(x) = 1[b1,b2](x) holds. By

construction of Iw,b1,b2 , we can approximate any indicator function 1[b1,b2] by sums of
ReLU functions point-wise. Let now µ ∈ M(K) be a measure, such that for every
w ∈ Rd and every b ∈ R it holds that∫

K
ϱR(w · x− b)dµ(x) = 0, (3.22)

then by the monotone convergence theorem it holds for every w ∈ Rd and every b1, b2 ∈ R
that ∫

K
1[b1,b2](w · x)µ(x) = 0. (3.23)

With Proposition 3.2.3, the claim follows.

22

3.2 Universality

Lemma 3.2.5 (Sigmoidal Functions are Discriminatory). Let d ∈ N and let K ∈ Rd be
compact. Any continuous function f : R → R with

lim
x→−∞

f(x) = 0 and lim
x→∞

f(x) = 1, (3.24)

is called sigmoidal and is discriminatory w.r.t. K.

Proof. Let f be a sigmoidal function. For w ∈ Rd, b ∈ R, θ ∈ R and λ > 0, we consider
the function

Rd ∋ x 7→ gw,b,θ,λ(x) := f(λ(w · x− b) + θ), (3.25)

which possess the limit behavior,

lim
λ→∞

gw,b,θ,λ(x) =

0 if w · x− b < 0

f(θ) if w · x− b = 0

1 if w · x− b > 0,

(3.26)

by the asymptotically properties of f . As f and therefore also gw,b,θ,λ are bounded, we
can apply the dominated convergence theorem, to yield for every µ ∈ M(K), that∫

K
gw,b,θ,λdµ→

∫
K
1Hw,b,>

dµ+

∫
K
f(θ)1Hw,b,=

dµ (3.27)

for λ→ ∞, where Hw,b,> := {x ∈ K|w · x− b > 0} and Hw,b,= := {x ∈ K|w ·x− b = 0}.
We now assume, that ∫

K
gw,b,θ,λdµ = 0 (3.28)

holds for every w ∈ Rd and every b ∈ R, which coincides with the assumption in the
definition of discriminatory, as we can write

gw,b,θ,λ(x) = f((λw) · x− (λb− θ)). (3.29)

Under this assumption, we observe that

0 =

∫
K
1Hw,b,>

dµ+

∫
K
f(θ)1Hw,b,=

dµ→
∫
K
1Hw,b,>

dµ (3.30)

for θ → −∞ and conclude that the later integral must also be equal 0 for every w ∈ Rd

and every b ∈ R. Note that for any w ∈ Rd, b1, b2 ∈ R, b1 < b2 fixed we have

0 =

∫
K
1Hw,b1,>

dµ−
∫
K
1Hw,b2,>

dµ =

∫
K
1[b1,b2](w · x)dµ(x), (3.31)

and thus the claim follows with Proposition 3.2.3.

Now that we have seen two activation functions, which are discriminatory, we want to
state the theorem on universality.

23

3 Neural Networks

Theorem 3.2.6 (Universal Approximation Theorem). Let d ∈ N, let K ∈ Rd be compact
and let ϱ : R → R be any continuous discriminatory function. Then the set

Nϱ :=
⋃
n∈N

{
R(d,n,1),ϱ(·, θ) | θ ∈ Rp((d,n,1))

}
(3.32)

of realization functions of two layer neural networks with input d and activation function
ϱ, is dense in C(K). In other words, given a function f ∈ C(K) and ϵ > 0, there exists
n ∈ N and θ ∈ Rp((d,n,1)), such that

sup
x∈K

|R(d,n,1),ϱ(x, θ)− f(x)| < ϵ. (3.33)

Proof. Note that any realization function of a neural network with continuous activation
function can be written as a composition of continuous functions. Indeed, we can rewrite
the definition towards a composition of affine linear functions and the activation function.
More precisely, given parameters ((W (ℓ), b(ℓ)))Lℓ=1 = θ ∈ Rp(N) for fixed L ∈ N and

N ∈ NL+1, let us define a sequence of affine linear functions (ϕ
(ℓ)
θ)Lℓ=1 by

ϕ
(ℓ)
θ : RNℓ−1 → RNℓ , x 7→ ϕ

(ℓ)
θ (x) :=W (ℓ)x+ bℓ. (3.34)

By abuse of notation, we assume that the activation function acts component-wise and
so we can rewrite the realization function as

RN,ϱ(·, θ) = ϕ
(L)
θ ◦ ϱ ◦ ϕ(L−1)

θ ◦ · · · ◦ ϱ ◦ ϕ(1)θ . (3.35)

Therefore, the realization function RN,ϱ(·, θ) must be continuous itself. This holds es-
pecially true for any realization function of a two-layer neural network and moreover
if restricted to K and we can finally conclude that Nϱ ⊆ C(K) holds. Assume now,
that Nϱ is not dense in C(K), then we can find some g ∈ C(K) \ Nϱ. Moreover, by the
theorem of Hahn-Banach (cf. Rudin [31, Theorem 5.19]), there exists a functional

0 ̸= G ∈ C(K)′ = M(K), (3.36)

such that G = 0 on the set Nϱ. Further, note that

Rd ∋ x 7→ ϱw,b(x) := ϱ(w · x− b) ∈ Nϱ, (3.37)

for some w ∈ Rd and b ∈ R, which implies G(ϱw,b) = 0 for every w ∈ Rd and every
b ∈ R. Therefore, there exists a non-zero measure µ ∈ M(K), such that∫

K
ϱw,bdµ = 0 (3.38)

for every w ∈ Rd and every b ∈ R. But this is a contradiction to the assumption, that ϱ
is discriminatory and so we finish the proof.

24

3.3 Hypothesis Space of Neural Networks

Remark 3.2.7. Under additional assumptions on the activation function, the above
statement can be extended to hold not only for shallow neural networks but also for deep
neural networks. Note that there are many variations of the statement in Theorem 3.2.6,
slightly differing in assumptions and statements (cf. for instance Leshno [11], Scarselli
[16] and Hornik [7]). Especially Leshno [11] states, that universality already holds for
any activation function which is neither linear nor polynomial and even extends to set
of measurable functions B(K).

Remark 3.2.8. Theorem 3.2.6 shows, that we can approximate any continuous function
on a compact set with a neural network up to any degree of accuracy. However, we are
still lacking an understanding of how many neurons are required in a neural network, to
achieve a certain approximation accuracy, as the theorem only assumes the number of
neurons in the hidden layer to be N1 ∈ N. Further, we also did not gain any insight into
an applicable algorithm, which could deliver the appropriate parameters θ, to achieve
any approximation result. Regarding the algorithm, we will see in the next section the
parameter optimization algorithm, gradient descent, which is widely used in practise.
On the other hand, we will not go into details on methods to bound the number of
required neurons N w.r.t. the number of layers L and varying additional assumptions,
but reference to the works as Anthony [19], Mhaskar [12], Blum [9] and Maiorov [20].

3.3 Hypothesis Space of Neural Networks

The previous section established that neural networks possess optimal approximation
properties, which suggests a convenient hypothesis space for learning problems. We
therefore propose the set of realization functions of neural networks with a fixed archi-
tecture as the hypothesis space. To fully conform with Definition 2.3.1, we need this
space to be a compact subspace of the space of bounded measurable functions. Clearly,
without any further assumptions, we are not fulfilling the conditions of Definition 2.3.1.
Allowing only neural network with parameters bounded by a constant and restricting the
input to a compact subset, we assure the conditions to be satisfied. Further, we intro-
duce the most commonly used solution methods for the newly stated learning problem
on the hypothesis space of neural networks, optimization algorithms based on gradients.

Definition 3.3.1 (Hypothesis Spaces of Neural Networks). Let d, n, L ∈ N, let D ⊆ Rd

be compact, let N = (N0, . . . , NL) ∈ NL+1, such that N0 = d and NL = n, let R > 0,
let q ∈ [1,∞] and let ϱ : R → R be continuous and non-polynomial. We define the
hypothesis space of neural networks on D with the given architecture a = (N, ϱ) and the
hyper-parameters R and q by

NN,ϱ,R,q(D,Rn) :=

{
RN,ϱ(·, θ)|D

∣∣∣∣ θ ∈ Rp(N) and ∥θ∥ℓq ≤ R

}
, (3.39)

where ∥θ∥ℓq = max
1≤i≤L

max
{
∥W (ℓ)∥ℓq , ∥b(ℓ)∥ℓq

}
.

25

3 Neural Networks

Note that we allow parameters θ ∈ Rp(N) with ∥θ∥ℓq ≤ R and especially also θi = 0 in
certain i ∈ p(N). This enables us to set weight matrix and bias vector entries of certain
layers ℓ to 0. By doing so, we can construct not only neural networks with number of
neurons N , but with any number of neurons Ñ = (N0, Ñ1, . . . , ÑL−1, NL) ∈ NL+1 with
Ñℓ ≤ Nℓ for every ℓ ∈ {1, . . . , L − 1}. Therefore, we can see the hypothesis space of
neural networks as the set of all realization functions of neural networks with number of
neurons up to N .
The hyper-parameter q determines the regularization of the weights. Throughout the
rest of the chapter we will assume the setting from Definition 3.3.1 to hold with q = ∞
and denote

NN,ϱ,R(D,Rn) :=

{
RN,ϱ(·, θ)|D

∣∣∣∣ θ ∈ [−R,R]p(N)

}
, (3.40)

as the hypothesis space under these assumptions, if not said otherwise. To assure, that
Definition 3.3.1 conforms with the conditions on hypothesis spaces from Definition 2.3.1,
we will show that N(N,ϱ,R)(D,Rn) is a compact subspace.

Lemma 3.3.2 (Parameter-Bounded Neural Networks are Compact). Assuming the set-
ting of Definition 3.3.1,

NN,ϱ,R(D,Rn) ⊆ B(D,Rn) (3.41)

is a non-empty compact subset.

Proof. Note that we can always find a realization function of a neural network in the
space NN,ϱ,R(D,Rn), e.g. by taking θ = Rp(N) and especially NN,ϱ,R(D,Rn) ̸= ∅. Fur-
ther, note that a realization function of a neural network with a continuous activation
function is always continuous itself, as a composition of continuous functions (cf. proof
of Theorem 3.2.6). This is as well true for the special case of bounded parameters and
in summary we can state that

∅ ≠ NN,ϱ,R(D,Rn) ⊆ C(D,Rn) (3.42)

holds. We will move on to show the compactness, by first defining the map

ψ : [−R,R]p(N) → NN,ϱ,R(D,Rn), θ 7→ RN,ϱ(·, θ)|D , (3.43)

which is continuous w.r.t. the topologies induced by the norm

∥ · ∥N : [−R,R]p(N) → [0,∞)

θ = ((W (ℓ), b(ℓ)))Lℓ=1 7→ max
ℓ∈{0,...,L}

∥W (ℓ)∥max + max
ℓ∈{0,...,L}

∥b(ℓ)∥∞
(3.44)

on [−R,R]p(N) and the uniform norm ∥ · ∥∞ on C(D,Rn) (cf. Petersen [67, Proposition
5.1]). Since [−R,R]p(N) is compact in the topology induced by the Euclidean norm and
the fact that all norms on finite-dimensional vector spaces induce the same topology,
[−R,R]p(N) must be compact in the topology induced by the norm ∥ · ∥N as well. By
definition of NN,ϱ,R(D,Rn), the map ψ is surjective. Further by continuity, the image of

26

3.3 Hypothesis Space of Neural Networks

compact sets is compact, and therefore

ψ
(
[−R,R]p(N)

)
= NN,ϱ,R(D,Rn) ⊆ C(D,Rn) ⊆ B(D,Rn) (3.45)

is a compact subset.

Now that we established the hypothesis space of neural networks, we can turn to the
optimization problem on samples. We will assume the setting of Definition 2.2.1 for
realizations of samples, which we again denote by

z = ((xi, yi))
m
i=1 ∈ (D,Rn)m. (3.46)

As a realization function of a neural network is again a function in B(D,Rn) for fixed
θ, the optimization problem can be stated as the quest to find an optimal choice of
parameters θ̂ that minimizes the empirical error. Note that under our assumptions, the
space NN,ϱ,R(D,Rn) is compact, and we showed before that, therefore, an optimal θ̂
exists, while not necessarily unique. This allows us to talk of optimization strategies or
algorithms. Note that we focused in Chapter 2 on the quadrature loss in the definition
of the empirical error function. However, we will state the arising minimization problem
for general loss functions as a measure of performance.

Definition 3.3.3 (Optimization Problem, Neural Network Version). Let s ∈ N0 and let
ϱ ∈ Cs(R,R) be non-polynomial. For a given loss function L ∈ Cs(Rn × Rn, [0,∞)), we
define the maps

υi : [−R,R]p(N) → [0,∞), θ 7→ L(RN,ϱ(xi, θ), yi) (3.47)

and the empirical error w.r.t. z and the loss function L by

Υ : [−R,R]p(N) → [0,∞), θ 7→ 1

m

m∑
i=1

νi(θ). (3.48)

The neural network version of the optimization problem, w.r.t. z and the loss function
L, is defined as the search for parameters θ ∈ [−R,R]p(N), such that the empirical error
Υ(θ) is minimal. More precisely, we want to find the parameters in the set

argmin
θ∈[−R,R]p(N)

Υ(θ) = argmin
θ∈[−R,R]p(N)

1

m

m∑
i=1

L(RN,ϱ(xi, θ), yi) (3.49)

Note that the concept of learning algorithms from Definition 2.4.7 transfers to neural
network, as algorithms which seek to find parameters θ for a given neural network
architecture. By far, the most used optimization methods are gradient-based, and in
the field of neural networks, we often specifically use gradient descent algorithms. We
will first introduce the deterministic version and later the stochastic version of gradient
descent.

27

3 Neural Networks

Definition 3.3.4 (Gradient Descent Algorithm). Let Γ = (γk)k∈N ∈ (0,∞)N, let p ∈ N,
let θ(0) ∈ Rp and let Υ ∈ C1(Rp,R). Then the sequence

(
θ(k)
)
k∈N0

defined through the
iteration step

θ(k) = θ(k−1) − γk∇Υ
(
θ(k−1)

)
, (3.50)

is called gradient descent sequence for Υ with initial point θ(0) and step sizes Γ. We call
the step size sequence (γk)k∈N fixed, if γk = γ1 holds for all k ∈ N≥2.

In the machine learning context, step sizes are also called learning rates.

Remark 3.3.5. We observe that a differentiable multivariable function Υ has the prop-
erty that it decreases the fastest from a point θ(k−1) in the direction of the negative
gradient at θ(k−1), i.e., −∇Υ(θ(k−1)). Assuming Υ has local minima, moving against
the gradient points towards one of them. Hence, for sufficiently small step sizes Γ, the
function values of the gradient descent sequence are monotonically decreasing,

Υ(θ(k−1)) ≥ Υ(θ(k)). (3.51)

Note that the sequence of function values of the gradient descent sequence (Υ(θ(k)))k∈N0

still heavily relies on the choice of step sizes and the initial point θ(0). Moreover, it may
prefer a close local minimum over the global minimum for non-convex Υ (see Figure 3.3).
While this presents a challenging problem for fixed step sizes, one can choose another
step size sequence design to force exploration of the landscape by starting with larger step
sizes. This could lead to convergence in a global minimum (cf. for instance Smith [49]
and Smith [50]). Note that this design is not trivial, as the starting location can vary
and highly influence the result.

Remark 3.3.6. The gradient descent algorithm asks for Υ ∈ C1(Rp,R). According to
the assumptions made in the optimization problem for neural networks in Definition
3.3.3, the objective function satisfies Υ ∈ Cs(Rp(N),R) and therefore, we will assume in
the following discussions that s ≥ 1. Moreover, in order to apply the gradient descent
algorithm on the parameters of the hypothesis space of neural networks, we need to ensure
that θ(K) ∈ [−R,R]p(N) holds. While the starting parameters can be chosen in this way
θ(0) ∈ [−R,R]p(N), the algorithm might not provide us with the required property on the
gradient descent sequence. To ensure that each θ(k) in the gradient descent sequence is a
valid parameter for a neural network in a hypothesis space with fixed R > 0, we need to
project every θ(k) onto the hypercube [−R,R]p(N). This is called the projected gradient
descent (cf. Iusem [26]). A satisfactory version of the recursive definition (3.50) is
therefore

θ(k) = π[−R,R]p(N)

(
θ(k−1) − γk∇Υ

(
θ(k−1)

))
, (3.52)

where
π[−R,R]p(N) : Rp(N) → [−R,R]p(N) (3.53)

projects every point x ∈ Rp(N) to its closest elements in the hypercube [−R,R]p(N), which
is a unique point, as the hypercube is convex in Rp(N).

28

3.3 Hypothesis Space of Neural Networks

Figure 3.3: Contour lines on the subspace
[
−7

9 ,
9
4

]
× [−2, 2] ⊂ R2 of the function Υ,

defined by R2 ∋ (θ1, θ2) 7→ Υ(θ1, θ2) := θ41 + θ22 + θ1θ2− 2θ21 − θ31 ∈ R and the
first 30 steps of two gradient descent sequences (red) starting in

(
−3

2 ,−
3
2

)
and(

1, 32
)
with step sizes γk = 0.05 for all k ∈ {1, . . . , 20}. The function Υ has no

maxima and two local minimum, where one is at
(
−3

4 ,
3
8

)
and the other one

at
(
3
2 ,−

3
4

)
, which is also the global minimum. While the gradient descent

sequence starting in
(
1, 32
)
converges to the global minimum, the gradient

descent sequence starting in
(
−3

2 ,−
3
2

)
prefers the nearest local minimum

over the optimal choice. This illustrates the dependency on the initial point
θ(0) in the gradient descent algorithm.

The next theorem demonstrates that, under additional assumptions, the gradient descent
sequence converges.

Theorem 3.3.7 (Convergence of Gradient Descent). Let p ∈ N, let K ∈ R and let
Υ ∈ C1(Rp,R), such that Υ is bounded from below by K and that the gradients are

29

3 Neural Networks

Lipschitz-continuous with some constant L > 0. That means

∥∇Υ(x)−∇Υ(y)| ≤ L∥x− y∥ (3.54)

holds for every x, y ∈ Rp. Then, for every initial point θ(0) ∈ Rp and for every fixed step
size sequence

Γ = (γk)k∈N ∈
(
0,

1

L

)N
, (3.55)

the associated gradient descent sequence
(
θ(k)
)
k∈N0

fulfills

lim
k→∞

∇Υ(θ(k)) = 0. (3.56)

Proof. Ruszczyński [36, Theorem 5.1].

Now that we established an algorithm for the optimization problem in Definition 3.3.3,
we would like to apply it to a realization function of a neural network. We first note
that the gradient of

Υ(θ) =

m∑
i=1

νi(θ) (3.57)

requires the computation of the gradients of the maps νi,

∇Υ(θ) =
1

m

m∑
i=1

∇νi(θ) =
1

m

m∑
i=1

∇L(RN,ϱ(xi, θ), yi). (3.58)

One computationally efficient and common way of computing the gradients w.r.t. the
parameters θ ∈ Rp(N) in the case of neural network, is the backpropagation algorithm (cf.
Rumelhart [5]). In essence, backpropagation makes use of the fact that, in computing
the gradients of the maps νi, one has to compute particular parts multiple times while
recursively using the chain rule of classical calculus. To illustrate, let us consider the
gradient

∂νi(θ)

∂θj
=
∂ (L(·, yi) ◦ RN,ϱ(xi, ·)) (θ)

∂θj

= L(·, yi)′ (RN,ϱ(xi, θ))
∂RN,ϱ(xi, ·)(θ)

∂θj

(3.59)

and further

∂RN,ϱ(xi, ·)(θ)
∂θj

=
∂
(
ϕ
(L)
θ ◦ ϱ ◦ ϕ(L−1)

θ ◦ · · · ◦ ϱ ◦ ϕ(1)θ (xi)
)

∂θj
. (3.60)

Reminding ourselves that θj is nothing else than some weight matrix entry W
(ℓ)
k1,k2

or

30

3.3 Hypothesis Space of Neural Networks

some bias vector entry b
(ℓ)
k in a layer ℓ, and by applying the chain rule repeatedly, we

can finally notice that all θj in the layers ℓ̂ ≤ ℓ have repeated calculations. Therefore,
the most efficient way to calculate the gradients w.r.t. all θj is backwards through the
layers while reusing the previous calculations, giving the algorithm its name. For more
details, refer to source as Bishop [30, Section 5] or Rumelhart [5].

Further, the asymptotic computational cost for computing the gradient ∇νzi with the
backpropagation algorithm is going towardsO(p(N)) floating point operations (cf. Bishop
[30]). As we need to compute the gradient of νi for all i ∈ {1, . . . ,m} in order to com-
pute the gradient ∇Υ, using backpropagation in the gradient-descent algorithm results
in a computational complexity tending towards O(mp(N)) floating point operations for
each single gradient step. We remind ourselves that we aim towards a small error and
for a fixed architecture of neural networks, increasing the amount of samples would de-
crease the former, as the approximation error is not effected (cf. Proposition 2.4.1).
However, as we have now established, under the assumption of using the backpropaga-
tion algorithm, the computational complexity of the gradient descent algorithm scales
asymptotically linearly with m, which hints to the idea of reducing the number of sam-
ples to some β ∈ N≤m in each gradient descent step. We refer to these smaller amounts
of samples, as mini-batches, which are drawn uniformly at random from all m samples.
The resulting algorithm is referred to as (mini-batch) stochastic gradient descent, which
we will now define for neural networks.

Definition 3.3.8 ((Mini-Batch) Stochastic Gradient Descent Algorithm). Let β ∈ N≤m,
let θ(0) ∈ Rp(N), let Γ = (γk)k∈N ∈ (0,∞)N, let

(
κ(k)

)
k∈N be independent uniformly

distributed random vectors, such that for every k ∈ N

κ(k) =
(
κ
(k)
1 , κ

(k)
2 , . . . κ

(k)
β

)
: Ω → Nβ

≤m. (3.61)

Then, the sequence
(
θ(k)
)
k∈N0

defined through the iteration step

θ(k) = θ(k−1) − γk
β

β∑
i=1

∇θL
(
RN,ϱ

(
x
κ
(k)
i

, θ(k−1)
)
, y

κ
(k)
i

)
, (3.62)

is called stochastic gradient descent sequence with initial point θ(0), step sizes Γ and batch
size β.

Note that for β = m and with only allowing unique draws

κ(k) : Ω →
{
(i1, i2, . . . , iβ) ∈ Nβ

≤m

∣∣∣∣ i1 < i2 < · · · < iβ

}
⊂ Nβ

≤m, (3.63)

the stochastic gradient descent algorithm coincides with the gradient descent algorithm.
For this reason, gradient descent is sometimes also referred to as batch gradient descent.
For any β < m, the asymptotic computational complexity for the stochastic gradient
descent algorithm decreases to O(βp(N)) < O(mp(N)) floating point operations. Under

31

3 Neural Networks

certain conditions, convergence of the stochastic gradient algorithm can be ensured,
even though it is not deterministic and well-behaved like the original gradient descent
algorithm (cf. for instance Jentzen [52], Bertsekas [23] and Shamir [40]).

Figure 3.4: Plots of the stochastic gradient descent algorithm with different mini-batch
sizes, from left to right β = m = 1000, β = 1 and β = 4, for an objective
function with one local and global minimum. With increasing size of the
mini-batch, the stochastic gradient descent sequence decreases in variance
and fluctuations.

Moreover, the gradient step in (3.62) uses an unbiased estimator of the gradient ∇Υ, as

E

[
1

β

β∑
i=1

∇θL
(
RN,ϱ

(
x
κ
(k)
i

, θ(k−1)
)
, y

κ
(k)
i

)]

=
1

m

m∑
i=1

∇νi
(
θ(k−1)

)
= ∇Υ(θ(k−1))

(3.64)

This inspires the idea of reformulating the stochastic gradient step in (3.62) to a more
general approach. Towards a broader definition, let

(
G(k)

)
k∈N be a sequence of random

32

3.4 Asymptotic Sample Behavior

vectors, such that
E[G(k)|θ(k−1)] = ∇Υ(θ(k−1)). (3.65)

Then we state the recursive definition of the stochastic gradient descent sequence in
(3.62) in its general form,

θ(k) = θ(k−1) − γkG
(k). (3.66)

While the average over a mini-batch of gradients ∇νi is an unbiased estimator of the
gradient ∇Υ, the variance in the estimates goes up with decreasing computational cost,
which leads to fluctuations in the stochastic gradient descent sequence (cf. Figure 3.4).

Remark 3.3.9 (Gradient Descent Improvements). In addition to the classical gradient
descent algorithm and the stochastic version, there exist numerous improved methods
that aim for more optimal ways of convergence. Some of the noteworthy ideas include
letting the sequence generate momentum (cf. Quian [21]) and the Adam optimizer (cf.
Kingma [42]). We refrain from going into more detail on any of these methods and and
refer interested readers to Goodfellow [41, Chapter 8] and Ruder [48] for an overview.

3.4 Asymptotic Sample Behavior

In chapter 2, we already established some basic understandings of the relationship be-
tween the number of samples and the errors on a given hypothesis space H. In this
chapter, we focus specifically on neural networks for solving the minimization problem
and as hypothesis spaces, as introduced in the last section. Hence, we aim to understand
the errors in more detail under the selection of H = NN,ϱ,R,q(D,Rn). So far, we only
developed bounds and results for errors in form of the expected value of the quadrature
loss. While this might seem sufficient, we can encounter many real-world situations,
which require stronger forms of accuracy measures. For example, in the security field
(cf. for instance Eykholt [51]), no only good average performance is desired, but in each
single data input, hence in the uniform norm. To gain insights in the relationship be-
tween the amount of samples needed and a sufficiently good universal accuracy, we are
discussing in this section the results of the work by Berner [68]. The paper specifically
focuses on the hypothesis spaces

H = NN,ϱR,R,q

(
[0, 1]d,R

)
(3.67)

as defined in Definition 3.3.1, where ϱR denotes the ReLU activation function

R ∋ x 7→ ϱR(x) := max{0, x} ∈ R. (3.68)

Conversely, unlike the optimization problems observed before, we will not seek a function
f ∈ H or, in the sense of the hypothesis space of neural networks as in Definition 3.3.3,
for parameters θ ∈ Rp(N) with ∥θ∥ℓq ≤ R which minimizes a given empirical error w.r.t.
realizations of random samples z, but we are able to deterministically chose z. More
precisely, we no longer aim to find an empirical target function f̂H,z that minimizes the

33

3 Neural Networks

empirical error function, but we are given a target function u, to be reconstructed from
some chosen z = (xi, u(xi))

m
i=1. The considered target classes are U ⊂ C

(
[0, 1]d

)
, which

contain a copy of the hypothesis space

u0 + c0H ⊂ U (3.69)

for some u0 ∈ U and constant c0 > 0.

In an attempt to guarantee that the bounds conform to uniform accuracy over all opti-
mization ideas, no specific optimization algorithms will be assumed, but the bounds will
be shown for the theoretically best algorithm with the capability to sample determinis-
tically in an adaptive fashion. This means that we will not be equipped with samples,
but the algorithm is able to generate them according to its own needs. We will begin by
introducing these kinds of algorithms with the new error concept and then move on to
state and prove the bounds on the amount of samples needed for uniform accuracy.

Definition 3.4.1 (Adaptive Deterministic Methods). Let d,m ∈ N and let Y be a
Banach space, then for any given U ⊂ C([0, 1]d) ∩ Y , we call a map Ã : U → Y
an adaptive deterministic method using m point samples, if there exist a sequence of
mappings (αi)

m
i=1 with

α1 ∈ [0, 1]d and αi :
(
[0, 1]d

)i−1
× Ri−1 → [0, 1]d for i = 2, . . . ,m (3.70)

and another mapping

Q :
(
[0, 1]d

)m
× Rm → Y, (3.71)

such that for every u ∈ U , with the point sequence x = (x1,xm) ⊂
(
[0, 1]d

)m
generated

by (αi)
m
i=1 as

x1 = α1 and xi = αi(x1, . . . , xi−1, u(x1), . . . , u(xi−1)) for i = 2, . . . ,m, (3.72)

the map Ã follows the scheme

Ã(u) = Q(x1, . . . , xm, u(x1), . . . , u(xm)) ∈ Y. (3.73)

We denote by Algm(U, Y) the set of all deterministic methods using m point samples.

Next we will see a randomized version of the algorithms in the definition above.

Definition 3.4.2 (Adaptive Random Methods). Let d,m ∈ N and let Y be a Banach
space, then for any given U ⊂ C([0, 1]d)∩Y and some probability space (Ω,F ,P), we call a
tuple (A,m) adaptive random method using m point samples on average, if A = (Ãω)ω∈Ω
is a sequence over Ω and m : Ω → N is a mapping, such that the following conditions
apply to them:

1. m is measurable, and E[m] ≤ m,

34

3.4 Asymptotic Sample Behavior

2. ∀u ∈ U : ω 7→ Ãω(u) is a measurable map with respect to the Borel σ-algebra on
Y, and

3. ∀ω ∈ Ω : Ãω ∈ Algm(ω)(U, Y).

We denote by AlgMC
m (U, Y) the set of all random methods using m point samples on

average.

The described methods in Definition 3.4.2 are sometimes also referred to as Monte-
Carlo algorithms. Furthermore, note that Algm(U, Y) ⊂ AlgMC

m (U, Y) holds, as any
deterministic sampling method can be reinterpreted as a randomized method over a
trivial probability space.

Definition 3.4.3 (Optimal (Randomized) Error). Let d,m ∈ N and let Y be a Banach
space, then for any given U ⊂ C([0, 1]d) ∩ Y , we define the optimal (randomized) error
as

errMC
m (U, Y) := inf

(A,m)∈AlgMC
m (U,Y)

sup
u∈U

E[∥u− Ãω(u)∥Y]. (3.74)

The optimal randomized error will be our measure of accuracy when attempting to
reconstruct target functions from m point samples.

Remark 3.4.4. In contrast to the previous definition of algorithms in Definition 2.4.8
and its resulting error EZ(A(z)), does not depend on a choice of method or some z, but
instead considers the optimal algorithms with the optimal choices of samples.

Definition 3.4.5 (Copy of Hypothesis Space). Let d ∈ N and let U,H ⊂ C
(
[0, 1]d

)
. If

there exists u0 ∈ U and c0 > 0, such that

u0 + c0H ⊂ U (3.75)

holds, we say that U contains a copy of H (attached to u0 with constant c0).

Next, we will state the lower bound found on the established error in the special case of
Y = L∞ ([0, 1]d) and the necessary conditions for the behavior of the number of samples
m required to achieve a certain level of uniform accuracy.

Theorem 3.4.6 (Lower Bound on Uniform Accuracy). Let L ∈ N≥3, let d ∈ N, let
q ∈ [1,∞] and let R > 0. Let U ⊂ C

(
[0, 1]d

)
be a target class, which contains a

copy of NN,ϱR,R,q

(
[0, 1]d,R

)
with some constant c0 > 0, where Nℓ = 3d fixed for every

ℓ ∈ {1, . . . , L− 1}. Then, with

Ωlow =

1

4·32/q ·RL · d1−
2
q if q ≤ 2

1
24 ·RL ·

(
(3d)

1− 2
q

)L−1
if q ≥ 2,

(3.76)

it holds that

errMC
m (U,L∞([0, 1]d)) ≥ c0 ·

Ωlow

64d
·m− 1

d . (3.77)

35

3 Neural Networks

A more general case will be stated in Theorem 3.4.8 and proven afterwards.

Remark 3.4.7 (Lower Sample Bound for Uniform Accuracy). The lower bound of the
optimal error in (3.77) can be rewritten to a lower bound on the samples needed to reach
accuracy ϵ ≥ 0. Assume that there exists an ϵ ≥ 0 such that errMC

m (U,L∞([0, 1]d)) ≤ ϵ.
Then, with Ωlow as in (3.76), it holds that

m ≥ cd0 ·
(
Ωlow

64d

)d

· errMC
m (U,L∞([0, 1]d))−d

≥ cd0 ·
(
Ωlow

64d

)d

· ϵ−d.

(3.78)

If we set ϵ = 1
1024 , we can even give a more tangible estimate,

m ≥ 2d ·RdL · (3d)d(L−2). (3.79)

Here, the required number of samples grows exponentially w.r.t. the input dimension d.

Theorem 3.4.8 (Lower Bound on Optimal Error). Let L ∈ N≥3, let d, J ∈ N, let
p, q ∈ [1,∞] and let R > 0. Let U ⊂ C

(
[0, 1]d

)
be a target class, which contains a

copy of NN,ϱR,R,q

(
[0, 1]d,R

)
with some constant c0 > 0, where Nℓ = J fixed for every

ℓ ∈ {1, . . . , L− 1}. Then, for any s ∈ N with s ≤ min
{
J
3 , d
}
and with

Ωlow =

1

4·32/q ·RL · s1−
2
q if q ≤ 2

1
24 ·RL ·

(
(J

1− 2
q

)L−1
if q ≥ 2,

(3.80)

it holds that

errMC
m (U,Lp([0, 1]d)) ≥ c0 ·

Ωlow

(64s)
1+ s

p

·m− 1
p
− 1

s . (3.81)

By taking p = ∞ and J = 3d, Theorem 3.4.8 directly implies Theorem 3.4.6. To show
that Theorem 3.4.8 holds, we use a lemma and another theorem. Lemma 3.4.10 is
implying, that each hypothesis space N(d,J...,J,1),ϱR,R,q([0, 1]

d,R) contains a large class of
hat functions (cf. Definition 3.4.9). The second statement, Theorem 3.4.11, shows that
under the condition of the class U containing a large class of hat functions, the lower
bound stated in Theorem 3.4.8 holds.

Definition 3.4.9 (Hat Functions). Let d ∈ N, let B > 0, let σ ∈ R and let y ∈ Rd.
Then we define a hat function with sharpness B and peak σ by

ΛB,σ : R → (−∞, 1], t→
{

0 if t ≤ σ − 1
B

1−B · |t− σ| if t ≥ σ − 1
B .

(3.82)

36

3.4 Asymptotic Sample Behavior

Further, let s ∈ {1, . . . , d}, then we define

Λ
(s)
B,y : Rd → (−∞, 1], x 7→

(
s∑

i=1

ΛB,yi(xi)

)
− (s− 1) (3.83)

and
ζ
(s)
B,y : Rd → [0, 1], x 7→ ϱR(Λ

(s)
B,y(x)). (3.84)

Lemma 3.4.10. Let L, J ∈ N≥3, let d ∈ N, let R > 0 and let s ∈ N with s ≤ min{d, J3 }.
Then, there exist for every q ∈ [1,∞] a constant λq ∈ R such that for every B ∈ N,
every ν ∈ {±1} and every y ∈ [0, 1]d, we have

ν · λq
Bs

· ζ(s)B,y ∈ NN,ϱR,R,q([0, 1]
d,R), (3.85)

where Nℓ = J for ℓ ∈ {2, . . . , L− 1}.

Proof. Berner [68, Lemma 2.4 and Lemma 2.5].

Theorem 3.4.11. Let d,m ∈ N, let s ∈ {1, . . . , d} and let U ⊂ C([0, 1]d). If for every
ν ∈ {±1} and every y ∈ [0, 1]d, there exists a certain λ > 0 and u0 ∈ C([0, 1]d) such that

u0 + ν · λ

Bs
ζ
(s)
B,y ∈ U (3.86)

for B = 8
⌈
m1/s

⌉
, then it holds for every p ∈ [1,∞] that

errMC
m (U,Lp([0, 1]d)) ≥ λ/2

(64s)1+s/p
·m− 1

p
− 1

s . (3.87)

Proof. We begin by setting k := ⌈m1/s⌉ and define the sequence (yℓ)ℓ∈{1,...,4k}d with

yℓ := (1,...,1)
8k − ℓ−(1,...,1)

4k ∈ [0, 1]d. Let Hm := ({1, . . . , 4k}s × {0}) × {±1} ⊂ Zd × {±1},
then it holds by assumption that

αℓ,ν := u0 + ν · λ

Bs
· ζ(s)

B,yℓ
∈ U (3.88)

for all (ℓ, ν) ∈ Hm. By Berner [68, Lemma 2.3] it holds that

supp(αℓ,ν − u0) = supp ζ
(s)

B,yℓ
⊂ yℓ + (B−1[−1, 1]s × Rd−s) (3.89)

and since for ℓ ̸= ℓ̃ we have ∥yℓ − yℓ̃∥ ≥ 1
4k >

1
8k = B−1, we can state

∀(ℓ, ν), (ℓ̃, ν̃) ∈ Hm : ℓ ̸= ℓ̃ =⇒ supp(αℓ,ν − u0)
◦ ∩ supp(αℓ̃,ν̃ − u0)

◦ = ∅. (3.90)

Let now Ã ∈ Alg2m(U,Lp[0, 1]d) be arbitrary and its according point sequence as con-

37

3 Neural Networks

structed in (3.72), x = (x1, . . . , x2m) ∈ ([0, 1]d)2m. We define

Ix :=
{
ℓ ∈ {1, . . . , 4k}s × {0} : ∀i ∈ {1, . . . , 2m} : ζ

(s)

B,yℓ
(xi) = 0

}
⊂ Zd (3.91)

and want to show that |Ix| ≥ (4k)s − 2m holds. By definition Ix ⊂ ({1, . . . , 4k}s ×{0}),
and so instead of estimating the cardinality directly, we will consider the complement set
Icx := ({1, . . . , 4k}s × {0})\Ix. Let ℓ ∈ Icx, then there must exist some iℓ ∈ {1, . . . , 2m},
such that ζ

(s)

B,yℓ
(xiℓ) ̸= 0, which implies xiℓ ∈ (supp ζ

(s)

B,yℓ
)◦. Hence, with the former result

in (3.90), the map Icx ∋ ℓ 7→ iℓ ∈ {1, . . . , 2m} is injective and therefore |Icx| ≤ 2m, which
shows that |Ix| ≥ (4k)s−2m. Combining the earlier definition of the sequence αℓ,ν from
(3.88) with the definition of Ix and the conditions on Ã lets us further state

∀(ℓ, ν) ∈ Hm : ℓ ∈ Ix =⇒ Ã(αℓ,ν) = Ã(u0). (3.92)

Next, by noting that

|Ix|
(4k)s

≥ 1− 2m

(4k)s
= 1− 2m

(4⌈m1/s⌉)s
≥ 1

2
, (3.93)

and with using previous results and definitions, it holds that

1

|Hm|
∑

(ℓ,ν)∈Hm

∥αℓ,ν − Ã(αℓ,ν)∥Lp([0,1]d)

=
1

(4k)s

∑
ℓ∈{1,...,4k}s×{0}

(
1

2
∥αℓ,−1 − Ã(αℓ,−1)∥Lp([0,1]d) +

1

2
∥αℓ,1 − Ã(αℓ,1)∥Lp([0,1]d)

)

≥ 1

(4k)s

∑
ℓ∈Ix

(
1

2
∥αℓ,−1 − Ã(αℓ,−1)∥Lp([0,1]d) +

1

2
∥αℓ,1 − Ã(αℓ,1)∥Lp([0,1]d)

)
≥ 1

2
· 1

|Ix|
∑
ℓ∈Ix

(
1

2
∥αℓ,−1 − Ã(αℓ,−1)∥Lp([0,1]d) +

1

2
∥αℓ,1 − Ã(αℓ,1)∥Lp([0,1]d)

)
≥ 1

2
· 1

|Ix|
∑
ℓ∈Ix

(
1

2
∥αℓ,−1 − Ã(u0)∥Lp([0,1]d) +

1

2
∥αℓ,1 − Ã(u0)∥Lp([0,1]d)

)
≥ 1

2
· 1

|Ix|
∑
ℓ∈Ix

(
1

2
∥αℓ,−1 − αℓ,1∥Lp([0,1]d)

)
=

1

2
· 1

|Ix|
∑
ℓ∈Ix

∥ λ

Bs
· ζ(s)

B,yℓ
∥Lp([0,1]d)

≥ λ · (4s)−1− s
p ·B−1− s

p

≥ λ · (4s)−1− s
p · 16−1− s

p ·m− 1
s
− 1

p =
λ

(64s)
1+ s

p

·m− 1
s
− 1

p ,

(3.94)

38

3.4 Asymptotic Sample Behavior

where we again used results from Berner [68, Lemma 2.3] in the before last line and in
the last line the fact that B = 8k ≤ 8m1/s + 8 ≤ 16m1/s.

We will now move on to show the last step before we can conclude the proof. For that, let
(Ω,F ,P) be some probability space, and let (A,m) ∈ AlgMC

m (U,Lp([0, 1]d) be arbitrary,
with A = (Ãω)ω∈Ω being a sequence over Ω. Define Ωm := {ω ∈ Ω|m(ω) ≤ 2m}, then
by the Markov inequality, we have

m ≥ E[m] ≥ 2m · P(Ωc
m) (3.95)

and therefore,

P(Ωm) = 1− (Ωc
m) ≥ 1

2
. (3.96)

To finish the proof, we note that we chose (A,m) ∈ AlgMC
m (U,Lp([0, 1]d) arbitrary and

hence to show the estimate in (3.87) it is enough to compute

sup
u∈U

E[∥u− Ãω(u)∥Lp([0,1]d)]

≥ 1

|Hm|
∑

(ℓ,ν)∈Hm

E[∥αℓ,ν − Ãω(αℓ,ν)∥Lp([0,1]d)]

= E

 1

|Hm|
∑

(ℓ,ν)∈Hm

∥αℓ,ν − Ãω(αℓ,ν)∥Lp([0,1]d)

≥ E

1Ωm(ω) · 1

|Hm|
∑

(ℓ,ν)∈Hm

∥αℓ,ν − Ãω(αℓ,ν)∥Lp([0,1]d)

≥ P(Ωm) · λ

(64s)
1+ s

p

·m− 1
s
− 1

p

≥ λ/2

(64s)
1+ s

p

·m− 1
p
− 1

s ,

(3.97)

where the first estimate follows from αℓ,ν ⊂ U and in the before last line (3.94) was
applied.

Proof of Theorem 3.4.8. Follows directly from Theorem 3.4.11 with Lemma 3.4.10.

Finally, we will state the upper bound.

Theorem 3.4.12 (Upper Bound on Uniform Accuracy). Let d, L ∈ N, let q ∈ [1,∞],
let R > 0 and let N1, . . . , NL−1 ∈ N. Then, with

Ωup =

{
2
√
d ·RL if q ≤ 2

2
√
d ·RL · (

√
d ·N1 · · ·NL−1)

1− 2
q if q ≥ 2,

(3.98)

39

3 Neural Networks

it holds that

errMC
m

(
N(d,N1...,NL−1,1),ϱR,R,q([0, 1]

d,R), L∞([0, 1]d)
)

≤ Ωup ·m− 1
d .

(3.99)

We will proof Theorem 3.4.12 with the help of two lemmas. Lemma 3.4.15 will imply
that each neural network is Lipschitz continuous and the Lipschitz constant (Definition
3.4.14) can be appropriately bounded with the hyper-parameters and numbers of neurons
N . The second lemma states that functions satisfying this property can be reconstructed
by piece-wise constant interpolation from samples.

Remark 3.4.13 (Upper Sample Bound for Uniform Accuracy). As for the lower bound,
we can rewrite the upper bound towards an upper bound on the needed samples. To do
so, we set U = NN,ϱR,R,q([0, 1]

d,R). Then, with Ωup as in (3.98), it holds that

m ≤ Ωd
up · errMC

m (U,L∞([0, 1]d))−d. (3.100)

Definition 3.4.14 (Lipschitz Constant). Let d, k ∈ N and let q ∈ [1,∞], then we define
the Lipschitz constant for any f : Rd → Rk w.r.t. the ℓq-norm by

Lipℓq(f) := sup
x,y∈Rd,x ̸=y

∥f(x)− f(y)∥ℓq
∥x− y∥ℓq

. (3.101)

Lemma 3.4.15. Let d, L ∈ N, let N = (N0, . . . , NL) ∈ NL+1, where N0 = d and
NL = 1 fixed, let q ∈ [1,∞] and let R > 0. Then, the Lipschitz constant of any
realization function RN,ϱR(·, θ) ∈ NN,ϱR,R,q([0, 1]

d,R), L∞([0, 1]d) w.r.t. the ℓ2-norm,
can be estimated by

Lipℓ2(RN,ϱR(·, θ)) ≤
{
RL if q ≤ 2

RL · (
√
N0NL ·N1 · · ·NL−1)

1−2/q if q ≥ 2.
(3.102)

Proof. Let RN,ϱR(·, θ) ∈ NN,ϱR,R,q([0, 1]
d,R), L∞([0, 1]d) be arbitrary. As already noted

in (3.34), with

ϕ
(ℓ)
θ : RNℓ−1 → RNℓ , x 7→W (ℓ)x+ bℓ, (3.103)

where ((W (ℓ), b(ℓ)))Lℓ=1 = θ ∈ Rp(N), and with assuming ϱR to act component-wise, we
can write RN,ϱR(·, θ) as

RN,ϱR(·, θ) = ϕ
(L)
θ ◦ ϱ ◦ ϕ(L−1)

θ ◦ · · · ◦ ϱ ◦ ϕ(1)θ . (3.104)

By Berner [68, Lemma B.1] and the fact that ∥W (ℓ)∥ℓq ≤ R, it holds that

Lipℓ2(ϕ
(ℓ)
θ) ≤

{
R if q ≤ 2

R · (
√
Ni−1Ni)

1−2/q if q ≥ 2.
(3.105)

40

3.5 Stability and Regularization Methods

Further, note that for all x, y ∈ R the ReLU function satisfies |ϱR(x)− ϱR(y)| ≤ |x− y|
and therefore also

∥ϱR(x)− ϱR(y)∥ℓ2 ≤ ∥x− y∥ℓ2 (3.106)

for every x, y ∈ RB, for every B ∈ N. Finally, by noting that for any appropriate
sequence of functions (fi)

k
i=1

Lipℓ2(fk ◦ · · · ◦ f1) ≤
k∏

i=1

Lipℓ2(fi) (3.107)

holds, we can conclude and finish the proof by combining the observations.

Lemma 3.4.16. Let d ∈ N. Then, for any m ∈ N, there exist points x1, . . . , xm ∈ [0, 1]d

and a map Tm : Rm → L∞([0, 1]d), such that for every map u : [0, 1]d → R with
Lipℓ2(u) <∞, it holds that

∥Tm (u(x1), . . . , u(xm))− u∥L∞([0,1]d) ≤ Lipℓ2(u) · 2
√
d ·m− 1

d . (3.108)

Proof. Berner [68, Lemma 2.9].

Proof of Theorem 3.4.12. Follows directly from combining Lemma 3.4.15 and Lemma
3.4.16.

Remark 3.4.17. Even that the ReLU activation function is one of the most used in
practise and therefore worthwhile studying, one might want to extend the results from
Theorem 3.4.6 and 3.4.12 to other options. However, due to the well-behaved proper-
ties of ReLU, other activation functions might pose more complex settings and need for
additional research.

Furthermore, previously we considered the error with regards to the quadrature loss.
While the work discussed in this section is rather new, there are a multitude of previous
efforts to find bounds on the errors w.r.t. the quadrature loss for regression and also
classification tasks. Since the variety of different approaches is vast, we will only mention
further readings from Anthony [19] and Blum [9].

The presented results make it clear that it is worthwhile to measure not only the average
performance but also to consider other errors, such as the maximum error.

3.5 Stability and Regularization Methods

In the final part of this chapter, we will discuss the concept of stability in neural networks
training and present a strategy to enhance it. Here, stability refers to the ability of a
trained learning algorithm to generalize to new and unseen data. As neural networks
usually have a large number of parameters, they are prone to picking up underlying
noise in the data, leading to over-fitting on the training samples and poor generalization

41

3 Neural Networks

performance. This poses the problem of finding a balance between variance and bias in
the hypothesis space complexity. In contrast to the typical U-shaped error curve that
shows the trade-off between bias and variance, neural networks provide tools to regulate
variance without significantly altering the bias. These include modifications to the archi-
tecture or algorithm, such as drop-out (Srivastava [45]) and data augmentation (Shorten
[58]), as well as regularization functions r : Rp(N) → R that modify the optimization
problem to the form

argmin
θ∈Rp(N)

Υ(θ) + r(θ). (3.109)

We will continue to assume the setting of Definition 3.3.1 throughout this section.

Definition 3.5.1 (Stability). Let ξ : N → R be a monotonously decreasing sequence,
let L ∈ C1(Rn × Rn, [0,∞)) be a loss function and let A be a learning algorithm on
NN,ϱ,R(D,Rn). We call A on-average-replace-one-stable with rate ξ w.r.t. L if, for any
data Z and every number of samples m ∈ N, it holds that

SZ(A) := E
[
Ei∼U(m)

[
L(A(Z i)(Xi), Yi))− L(A(Z)(Xi), Yi))

]]
≤ ξ(m), (3.110)

where Z = ((Xj , Yj))
m
j=1 and Z i = ((Xi

j , Y
i
j))

m
j=1 are different m i.i.d. copies of Z such

that Zj ∼ Zi
j for every j ̸= i and Z i

i ∼ Z independent of Z.

To put the concept of Definition 3.5.1 into words, we might explain stability to not
change in the output too much given a small change in the input. We will see now how
this definition of stability is related to the generalization error.

Theorem 3.5.2. Let L ∈ C1(Rn×Rn, [0,∞) be a loss function, let Z be some data and let
Z and Z i be different m i.i.d. copies of Z such that Zj ∼ Zi

j for every j ̸= i and Z i
i ∼ Z

independent of Z. Then, it holds for every learning algorithm A on NN,ϱ,R(D,Rn), that

E
[
EL
Z (A(Z))− EL

Z(A(Z))
]
= SZ(A), (3.111)

where EL
Z and EL

Z are the error and empirical error function for the loss function L.

Proof. First, we note

E
[
EL
Z(A(Z))

]
= E

[
1

m

m∑
i=1

L(A(Z)(Xi), Yi))

]
= E

[
Ei∼U(m) [L(A(Z)(Xi), Yi))]

]
.

(3.112)
Further, since Z i

i = (Xi
i , Y

i
i) is independent of Z, it holds that

E
[
EL
Z (A(Z))

]
= E

[
L(A(Z)(Xi

i), Y
i
i))
]
= E

[
L(A(Z i)(Xi), Yi))

]
. (3.113)

By the linearity of the expected value and combining the two equations we can complete
the proof.

Theorem 3.5.2 tells us that the definition of stability is equivalent with not over-fitting
on a random sample, used for training with the algorithm. Now that we fixed a concept

42

3.5 Stability and Regularization Methods

for stability, we will introduce regularization of the loss function as a way of increasing it.
We will assume the setting given in the optimization problem stated in Definition 3.3.3.
Then, we will modify the objective by introducing regularization of the loss function as
a way of increasing stability.

Definition 3.5.3 (Regularized Optimization Problem, Neural Network Version). Let
s ∈ N0 and let r : Rp(N) → R. For a given loss function L ∈ Cs(Rn × Rn, [0,∞)), let
Υ be defined as in Definition 3.3.3. The regularized version of the optimization problem
for neural networks, w.r.t. the loss function L, z and regularizer r, is defined as the
search for parameters θ ∈ [−R,R]p(N), such that the average regularized loss Υ(θ)+ r(θ)
is minimal. More precisely, we want to find the parameters in the set

argmin
θ∈[−R,R]p(N)

Υ(θ) + r(θ) = argmin
θ∈[−R,R]p(N)

1

m

m∑
i=1

L(RN,ϱ(xi, θ), yi) + r(θ). (3.114)

Intuitively, a regularizer can measure the complexity of the hypothesis space, or in the
case of neural networks the complexity of the parameters θ. Therefore, the regularized
version of the optimization problem seeks for minimizing the empirical error Υ, while
keeping the hypothesis spaces complexity low, acting as a balance towards stability (cf.
Remark 2.4.10 on bias-variance trade-off). It should come to no surprise that a common
choice is

rλ(θ) := λ∥θ∥ℓ1 (3.115)

for some λ > 0, which is called the L1-regularizer. Since we consider bounded parameters
θ ∈ [−R,R]p(N), we already have through the choice of R a regularization option, which
can be made more tight by optimizing the newly posed objective function with sufficient
regularizer. If we assume that s ≥ 1 and that r ∈ C1(Rp(N),R) holds, we can still apply
the same learning algorithms as before, since only the objective function has changed.
Another commonly used regularizer is the so called L2-regularizer or Tikhonov regular-
izer, which, for some λ > 0 is defined by

r̃λ(θ) := λ∥θ∥ℓ2 . (3.116)

We shall investigate its properties and stability characteristics next.

Definition 3.5.4 (Strongly Convex). Let λ ≥ 0 and let (S, ∥ · ∥) be a normed space. We
call a function f : X → R strongly λ-convex if for every x1, x2 ∈ S and α > 0, we have

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)−
λ

2
α(1− α)∥x1 − x2∥2. (3.117)

For functions which are 0-strongly convex, we also use the term convex.

Lemma 3.5.5. Let λ ≥ 0 and let (S, ∥ · ∥) be a normed space. Then, we have the
following properties:

1. r̃λ is 2λ-strongly convex.

43

3 Neural Networks

2. If f : X → R is λ-strongly convex and g : X → R is convex, then f+g is λ-strongly
convex.

3. If f : X → R is λ-strongly convex and x̃ = argmin
x∈S

f(x), then for any y ∈ X,

f(y)− f(x̃) ≥ λ

2
∥x̃− y∥2. (3.118)

Proof. Shalev-Shwartz [44, Lemma 13.5].

Proposition 3.5.6. Let λ > 0, let ρ > 0, let s ∈ N0 and let L ∈ Cs(Rn × Rn, [0,∞)) be
a loss function that is ρ-Lipschitz in the first variable and such that the mapping

θ 7→ L(RN,ϱ(x, θ), y) (3.119)

is convex for every (x, y) ∈ Rn × Rn. Furthermore, let A be a learning algorithm that
solves the regularized optimization problem for neural networks w.r.t. the loss function

L, z and the regularizer r̃λ. Then, A is on-average-replace-one-stable with rate 2ρ2

λm , and
it holds that

E
[
EL
Z (A(Z))− EL

Z(A(Z))
]
≤ 2ρ2

λm
. (3.120)

Proof. Shalev-Shwartz [44, Corollary 13.6].

Under the assumptions from Proposition 3.5.6, the stability term decreases if the regular-
ization parameter λ increases. One might note that the quadrature loss is only Lipschitz
continuous when restricted to a compact space, which is satisfied for our assumptions
on the hypothesis space NN,ϱ,R(D,Rn).
So far we have seen how regularizers can be utilized to control the size of the parameters
towards better stability in the sense of generalization. In general does regularization act
as a soft constraint on the learning problem, imposing additional requirements on the
parameters. In the next chapter we will see how this strategy can also balance multiple
error terms, offering a possibility to learn multiple tasks at once towards a common
learning goal. In fact, we will regularize the parameters θ not directly but through
constraints on the realization function RN,ϱ(·, θ) with the help of additional data for the
regularizer.

44

4 PDEs as a Learning Problem

The purpose of this chapter is to familiarize ourselves with partial differential equations
(PDEs), a widely used tool for describing different natural and man-made phenomena
in science and engineering. The usage of PDEs opens up possibilities to model easy
to complex behaviors in physics and other fields, which are often derived from first
principles. However, one caveat with the study of PDEs is that a significant number of
problems do not admit solvability in the analytical way towards an explicit formula. The
use of numerical methods allows researchers to accurately and efficiently approximate
solutions of these complex equations and understand the behavior of these systems.
However, numerical approximation has its downsides, such as computational effort and
introduction of additional error, and is typically only point-wise available.
We reinterpret the problem stated by a PDE as a learning problem and will present our
algorithm as a potential way to choose approximators in the hypothesis space of neural
networks. Additionally, we present an abstract error bound on the resulting algorithm,
supporting our choice.

4.1 Framework

To begin with, we will establish the necessary framework for studying PDEs through
the introduction of relevant notation for differential operators. To illustrate the diver-
sity of PDEs and the challenges that can arise in their solution, we will also provide
several examples. Note that, while we will limit ourselves to one-dimensional PDEs, the
definitions can be extended by considering systems of equations.

Definition 4.1.1 (Differential Operators). Let d, k ∈ N, let U ⊂ Rd be open and let

F : Rdk × Rdk−1 × · · · × Rd × R× U → R. Then the mapping L which for any function
u : U → R and x ∈ U is given by

L(u)(x) := F
(
Dku(x), Dk−1u(x), . . . , Du(x), u(x), x

)
, (4.1)

defines a kth-order differential operator on the region U . A differential operator can take
following forms:

1. L is called linear, if it is of the form

L(u)(x) =
∑
|α|≤k

aα(x)D
αu(x) (4.2)

for some functions aα : U → R.

45

4 PDEs as a Learning Problem

2. L is called semilinear, if it is of the form

L(u)(x) =
∑
|α|=k

aα(x)D
αu(x) + L̃(u)(x) (4.3)

for some functions aα : U → R and L̃, a differential operator of order ≤ k − 1 on
region U .

3. L is called quasilinear, if it is of the form

L(u)(x) =
∑
|α|=k

L̃α(u)(x)D
αu(x) + L̃0(u)(x) (4.4)

for some L̃α and L̃0, differential operators of order ≤ k − 1 on region U .

4. L is called non-linear, if it possesses non-linearities on one or more of the highest-
order derivatives.

Definition 4.1.2 (Partial Differential Equation). Let d, k ∈ N, let U ⊂ Rd be open and
let L be a differential operator of order k on the region U. Then we call the equation

L(u) = 0 (4.5)

a kth-order partial differential equation describing unknown functions u : U → R.

A PDE is considered solved if we can find all functions verifying the equation (4.5),
though in general this does not yield a unique solution. Moreover, most of the times it
is not possible to explicitly write down a solution, hence in these situations we are only
interested in certain properties that characterise the solutions.

Often in physics, we want to describe space and time dependent phenomena through
PDEs, namely functions u : U × (0, T) → R, with T > 0. We denote by the variable
x ∈ U space and t ∈ (0, T) the time component, and we write

U × (0, T) ∋ (x, t) 7→ u(x, t). (4.6)

In the following, we will restrict our attention to PDEs of this specific form. To allow
for the existence and uniqueness of solutions, we will also consider auxiliary boundary
conditions defined on the boundary of the domain U, as well as initial value conditions
on the time coordinate t.

Definition 4.1.3 (Auxiliary Conditions). Let T > 0, let d, k ∈ N, let U ⊂ Rd be open
and bounded and let L be a differential operator of order k on the region U×(0, T). Then
the following is defined as an initial-value problem{

L(u) = 0 on U × (0, T)
u(·, 0) = φ on U

(4.7)

46

4.1 Framework

for some φ : U → R. Further, we call{
L(u) = 0 on U × (0, T)
G(u) = ψ on ∂U × [0, T]

(4.8)

a boundary-value problem for some G, a differential operator of order ≤ k on the region
Ū × [0, T] and some function ψ : Ū × [0, T] → R. If a problem states both an initial and
a boundary condition, we call it initial/boundary-value problem.

Sometimes the differential operator G in Definition 3.1.3 is called the boundary operator.
Since the definition of PDEs is rather broad, it encompasses a vast range of problems,
making it infeasible to develop a single general theory of solvability for all PDE forms.
To gain an understanding of the complexity of such a theory and to familiarize ourselves
with the concept of PDEs, we will consider a few examples in the following. It should
be noted that we will present only a limited number of problems and that it is beyond
the scope of this thesis to delve deeply into the various branches of PDEs. Instead, we
refer the reader to the works of Evans [34], Brezis [35], Folland [14] and Renardy [28]
for a comprehensive overview of numerous examples and a starting point for further
exploration.

Example 4.1.4 (PDE Examples). We will state five differential operators modelling dif-
ferent simple physical phenomena of high interest in research and touch on their meaning
in the context of mathematical applications. Our setting follows Definition 3.1.1 for dif-
ferential operators, with consideration of space and time variables if needed.

1. Laplace’s equation. The differential operator that describes Laplace’s equation has
the linear form

L(u) = ∆u =

d∑
i=1

uxixi . (4.9)

Typically, Laplace’s equation is interpreted to describe the density of some quantity
in equilibrium, including e.g. chemical concentrations.

2. Transport equation. A transport equation is a hyperbolic PDE and has a linear
differential operator of the form

L(u) = ut + b · ∇u, (4.10)

where b ∈ Rd. The resulting problem models transport phenomena, like fluid move-
ments through space and time.

3. Reaction-diffusion equation. Reaction-diffusion equations are of semilinear form
and can be modelled by the differential operator

L(u) = ut − ν∆u− f(u), (4.11)

for some ν > 0 and function f . Phenomena described by problems rising from this
operator contain temperature distributions.

47

4 PDEs as a Learning Problem

4. Burgers’ equation. Burgers’ equation is another fundamental PDE and its semi-
linear differential operator is given by

L(u) = ut + uux − βuxx, (4.12)

where β ∈ R. The PDE counts fluid dynamics and traffic flow modelling to its
applications.

As noted earlier and illustrated through the examples, it is not entirely clear what
the different ways of solving PDEs contain, as this highly depends on the form of the
differential operator and on possible auxiliary conditions. We shall differentiate between
the problems in need of numerical methods and the ones which can be solved by analytical
methods.

Definition 4.1.5 (Solutions of PDEs). Let T > 0, let d, k ∈ N, let U ⊂ Rd be open and
bounded and let L be a differential operator of order k on the region U × (0, T). Further,
assuming implicit auxiliary conditions, we call a problem well-posed, if it holds that:

1. There exists an u : U × (0, T) → R which solves the PDE L(u) = 0.

2. The solution is unique.

3. The solution depends continuously on the conditions specifying the PDE.

If additionally u ∈ Ck(U × (0, T)), we call u a classical solution. When formulating the
differential operator L with weak derivatives, we call u a weak solution.

Classical solutions to PDEs can be obtained through the use of analytical techniques,
such as separation of variables or the method of characteristics (cf. for instance Evans
[34]). These techniques involve expressing the solution to the PDE as a mathematical
formula. However, it may not always be possible to obtain classical solutions to PDEs,
particularly when the equations are nonlinear or have complex boundary conditions. In
such cases, numerical methods can be employed to approximate the solution to the PDE.
Furthermore, we often encounter the case that even without classical solution, the weak
formulated problem is well-posed cite (cf. for instance Brezis [35]). Note that a solution
to the PDE is also a solution to the weak formulated PDE.

While numerical methods provide a useful alternative for solving PDEs that may not
have a known analytical solutions, they also have their limitations, such as the possibility
of errors and the requirement of additional computational resources (cf. for instance
Morten [29] and Thomas [17]).

Furthermore, note that we introduced auxiliary conditions in a general setting, only
assuming bounded spatial domain U . In specific problems, it may not be enough for a
classical solution to be k times differentiable on the interior of the region U × (0, T), but
additional conditions are needed for the solution function and its derivatives to ensure
the boundary condition to be well-defined. In some cases, this may require the solution
function to be differentiable up to some order on the closure of the region, or to satisfy

48

4.2 PDEs as a Learning Problem

suitable growth or decay conditions near the boundary. In other cases, we need only to
consider certain types of spatial domains that contain more restrictive assumptions on
the boundary of U .

4.2 PDEs as a Learning Problem

The search for solutions to a PDE with auxiliary conditions can be seen as a learning
problem, where the solution itself is viewed as a statistical model that is being learned
from samples. While we are interested in cases where solutions are not available through
analytical methods, we can view the learning problem in the sense of chapter 2 with the
data Z = (X, ũ(X)), where ũ is a point-wise approximation through numerical methods.
However, this approach might not always be computationally feasible, and includes an
approximation error of the method. Additionally, it does not make use of any condition
describing the PDE. On the other hand, only the initial condition can be stated in the
form of data for solutions to be learned in a supervised way. One way to overcome this
issue is to restrict the hypothesis space to functions that satisfy both other conditions. As
this poses a rather strong restriction and involves the problem of finding such hypothesis
spaces, we also obtain from this idea.

However, we have seen in the study of neural networks that we can include constraints
by introducing regularizers in an optimization problem. This opens up the possibility
to state the learning problem of PDEs in a regularized form, where the differential and
boundary operator are utilized as soft constraints. In this section, we shall demonstrate
how this idea can be formulated within the framework of the mathematical learning
problem as described in chapter 2, under the assumptions specified in Definition 4.1.3.

Definition 4.2.1 (Regularized Learning Problem for PDEs). Let T > 0, let d, k ∈ N,
let U ⊂ Rd be open and bounded and let L be a differential operator of order k on the
region U × (0, T) with auxiliary conditions describing an initial/boundary-value problem

L(u) = 0 on U × (0, T)

u(·, 0) = φ on U

G(u) = ψ on ∂U × [0, T].

(4.13)

Furthermore, let Dt ⊂ U , Dd ⊂ U × (0, T) and Ds ⊂ ∂U × [0, T] be compact subsets and
let Xt : Ω → Dt, X

d : Ω → Dd and Xs : Ω → Ds be independent uniformly distributed1

random vectors on some probability space (Ω,F ,P). Then we define by

Z = (Xt, Y t) = (Xt, φ(Xt)) (4.14)

the data and define the regularized error function ẼZ̃ : Ck(U × (0, T)) → [0,∞] w.r.t. the

1uniformly distributed on a compact D ⊂ Rd refers here to the probability density function assigning
the same value to every element in D and 0 outside. The probability of such a random vector X
taking on a subset D ⊂ D is given by the Lebesgue measure of D divided by the Lebesgue measure
of D, i.e., P(X ∈ D) = λ(D)/λ(D).

49

4 PDEs as a Learning Problem

data and regularization data Z̃ = (Z,Xd, Xs) by

ẼZ̃(u) := EZ(u(·, 0)) +
∫
Ω
∥L(u)(Xd)∥2dP+

∫
Ω
∥G(u)(Xs)− ψ(Xs)∥2dP. (4.15)

The regularized learning problem defines the search for functions u ∈ Ck(U × (0, T)) that
minimize the error function ẼZ̃ . We refer to the last two error terms in (4.15) as the
regularizing error terms.

Note that in Definition 4.2.1, the map Ω ∋ ω 7→ Y t(ω) is a random variable if φ is
B(U)/B(R)-measurable, which we assume to hold for the purpose of conforming to the
learning theory developed in Chapter 2. Furthermore, in order for the error to be well-
defined, we also assume L(u), G(u) and ψ to be measurable.

It is also important to note that even though the differential operator L and the boundary
operator G are not directly included in the definition of data, we are still only interested
in functions u that approximately satisfy all conditions of the PDE. In other words, we
seek functions u such that

u(Xt, 0) ≈ Y t

L(u) ≈ 0

G(u) ≈ ψ

(4.16)

holds. Heuristically speaking, we are forcing the learning method to respect the PDE
conditions as a soft constraint by adding the error terms of the operators to the error
function. Further, by limiting the data to the initial condition, we can learn the un-
derlying phenomena in a straightforward manner and avoid the need for any additional
efforts to gather point-wise information about the PDE.

Remark 4.2.2. Under the assumption that there exists a numerical method which ap-
proximates the solutions of problem (4.13) point-wise for every (x, t) ∈ U×(0, T), we are
able to state the learning problem with additional data and further to extend Definition
4.2.1 by another error term through application of the method to uniformly at random
sampled points inside U×(0, T). It should be noted that the computation of the point-wise
solutions may be computationally intensive and that an error may be introduced through
this method.

It is also worth noting that the previously obtained result for the regression function
is no longer valid, as the minimizer must not only take data Z into account, but ad-
ditionally needs to minimize the regularizing error terms. Under the assumption that
the considered PDE is well-posed and in possession of a classical solution, it is easy to
see that the minimizing function is exactly this solution. This tells us, that the learning
problem we stated in Definition 4.2.1 describes a valid reinterpretation for the problem
stated by a PDE.

In order to properly address the altered error function in our current situation, we must
redefine the empirical error function in accordance with the modified learning problem.

50

4.3 PINNs as a Special Regularization Approach

Previously, we considered m samples of the data Z. However, in the current analysis, we
require additionally for each of the random vectors Xd and Xs an individual amount of
samples md, ms ∈ N. Recall that we can obtain m ∈ N i.i.d. copies of a random vector,
which allows for the revised empirical error function. We will now assume the setting
specified in Definition 4.2.1.

Definition 4.2.3 (Regularized Empirical Error for PDEs). Let mt,md,ms ∈ N, let
Z = ((Xt

i , Y
t
i))

mt
i=1 be mt i.i.d. copies of Z and let X d = (Xd

i)
md
i=1 and X s = (Xs

i)
ms
i=1 be

md and ms i.i.d. copies of Xd and Xs. For every function u ∈ Ck(U × (0, T)), we define
the empirical error function w.r.t. Z̃ = (Z,X d,X s) as ẼZ̃ : Ω×Ck(U × (0, T)) → [0,∞]
given by

ẼZ̃(ω, u) := EZ(ω, u(·, 0))

+
1

md

md∑
i=1

∥L(u)(Xd
i (ω))∥2

+
1

ms

ms∑
i=1

∥G(u)(Xs
i (ω))− ψ(Xs

i (ω))∥2.

(4.17)

These rather drastic changes in the error functions raise the question of whether our
previously developed results still hold. So far, we obtained from specifying any further
details on function spaces, where L and G operate and did only assume measurability.
This already entails for a fixed u ∈ Ck(U × (0, T)) that the function

ẼZ̃(u) : Ω → [0,∞), ω 7→ ẼZ̃(ω)(u) = Ẽ(Z(ω),X d(ω),X s(ω))(u) (4.18)

is again F/B([0,∞])-measurable.
Furthermore, the results of Section 2.2 ask for square integrability of all error terms. As-
suming that the differential operators map u into the function space L2(U×(0, T),R;PXd)
for L and L2(Ū × [0, T],R;PXs) for G and by only allowing for φ ∈ L2(U,R;PXt),
ψ ∈ L2(Ū × [0, T],R;PXs), and u(·, 0) ∈ L2(U,R;PXt), measurability and square inte-
grability can be assured. To allow for these results to hold, we will only consider PDEs
that possess the mentioned properties unless otherwise mentioned.

4.3 PINNs as a Special Regularization Approach

By construction, neural networks with smooth activation functions are fully differentiable
w.r.t. all input coordinates and parameters θ, which makes them a fitting option for
applying differential operators. Further, by the universal approximation theorem we can
approximate continuous and even measurable functions arbitrarily good by realization
functions of neural networks, which makes the hypothesis space of neural networks a
natural choice for our learning problem. In this section we propose our algorithm, by
utilizing the concept of regularized optimization problems to encode the soft constraints
derived in the last section into the loss function. The resulting learned neural network

51

4 PDEs as a Learning Problem

using this strategy is called a physics-informed neural network and was first introduced
by Dissanayake [13] and Lagaris [15] and further developed by Raissi [57]. We will
assume the settings of Definition 4.2.3 for PDEs and the settings of Definition 3.3.1 and
Definition 3.5.3.

Algorithm 4.3.1 (Learning Strategy for PDEs with Neural Networks).

Input T > 0, U ⊂ Rd open and bounded, L differential operator of order k on region
U × (0, T) with auxiliary conditions describing an initial/boundary-value problem

L(u) = 0 on U × (0, T)

u(·, 0) = φ on U

G(u) = ψ on ∂U × [0, T].

(4.19)

(i) Choose an architecture a = (N, ϱ) with ϱ ∈ Ck(R,R) and hyper-parameter R > 0
for the hypothesis space of neural networks NN,ϱ,R(U × (0, T),R) and consider the
regularized optimization problem w.r.t the quadrature loss, z = ((xti, y

t
i))

mt
i=1 and

regularizer

r(θ) :=
λd
md

md∑
i=1

|L(RN,ϱ(·, θ))(xdi)|2 +
λs
ms

ms∑
i=1

|G(RN,ϱ(·, θ))(xsi)− ψ(xsi)|2 (4.20)

for some λd > 0 and λs > 0, where xd = (xdi)
md
i=1 and xs = (xsi)

ms
i=1 are realizations

of md and ms samples independently drawn according to the distribution of Xd

and Xs.

(ii) Choose a gradient-based optimization algorithm, the step sizes (γk)k∈N and numbers
of samples mt, md and ms.

(iii) Apply the optimization algorithm to the regularized optimization problem and run
it until a local minimum or a satisfactory level of accuracy is reached.

We call the neural network which uses parameters learned through the Algorithm 4.3.1
a physics-informed neural network (PINN). Note that the PINN and the trained param-
eters depend on x := (z,xd,xs) used in the steps of Algorithm 4.3.1. To emphasize this,
we write for the trained parameters a map

x 7→ θ∗(x) ∈ [−R,R]p(N) (4.21)

and consequently for the PINN

x 7→ u∗(x) := RN,ϱ(·, θ∗(x)). (4.22)

We can express the map θ∗ as a concatenation of the regularized loss function, the
optimization step using the gradient of the resulting loss and the map θ(i) 7→ RN,ϱ(·, θ(i))

52

4.3 PINNs as a Special Regularization Approach

for updating the parameters, starting at some θ(0). Hence θ∗ is measurable, if we assume
satisfying function spaces for the differential operators and regular enough functions
φ and ψ of the PDE, since we consider gradient-based optimization algorithms and
θ 7→ RN,ϱ(·, θ) is measurable. This also implies that the map u∗ is measurable under
these assumptions. For the sake of brevity, we omit the explicit details on the required
assumptions for the PDE and the specific expression of the map θ∗.

Further, note that the objective function for the considered regularized optimization
problem coincides with the empirical error function defined in Definition 4.2.3, when
choosing λd = 1 and λs = 1. Again, intuitively this strategy is forcing the neural
network to learn every condition representing the PDE simultaneously. However, it is
not immediately clear that minimizing the regularizer term in (4.20) would result in any
control over the approximation capabilities of the PINN. In the following, we will consider
under which circumstances a PINN can be guaranteed to be a good approximator of the
PDE, which will also act as a more concrete reasoning for why we are considering PINNs
as solution strategies.

The main idea behind PINNs is in utilizing the differential operator L in the regularizer
instead of learning solely from data. Because of this and for simplicity we assume that
auxiliary conditions are implicitly contained in the differential operator L, which also
includes an implicit assumption for sufficient regularity on the boundary of U , in order
to yield a regular enough solution. Further, for definiteness we will focus on function
spaces X∗ ⊂ W k,q(U × (0, T),R) and Y ∗ ⊂ Lp(U × (0, T)) for L : X∗ → Y ∗ to operate
on, which assumes some additional regularity on the solutions of the PDE. For the sake
of simplicity in notation we set p = 1 in the theorem. Further, note that we only need
to consider the random variable Xd from Definition 4.2.1 in this setting and that the
hypothesis space of neural networks is a closed subspace of W k,q(U × (0, T),R), if we
choose an activation function ϱ ∈ Ck(R,R).

Theorem 4.3.2 (Error Estimate of PINNs). Let T > 0, let d ∈ N, let U ⊂ Rd be
open and bounded, let D ⊂ U × (0, T) be closed, let 1 ≤ q < ∞, let k ∈ N0 and let
X∗ ⊂ W k,q(U × (0, T),R) and Y ∗ ⊂ L1(U × (0, T),R) be closed subspaces with norms
∥ · ∥X∗ and ∥ · ∥Y ∗ and let L : X∗ → Y ∗ be a differential operator of order k on the region
U × (0, T), describing the abstract PDE

L(u) = 0, (4.23)

including implicit auxiliary conditions. Further, let u∗ be the map described in (4.22)
trained until a local minimum for a given hypothesis space NN,ϱ,R(U × (0, T),R) with
some activation function ϱ ∈ Ck(R,R) and Xd : Ω → D. Let mT ,mV ∈ N and let
X T = (XT

i)
mT
i=1 and X V = (XV

i)mV
i=1 be two independent i.i.d. samples of Xd. We

assume for L, that the following holds:

(A1) : ∥L(u)∥Y ∗ <∞ for all u ∈ X∗, with ∥u∥X∗ <∞.

(A2) : There exists a unique solution u ∈ X∗ of (4.23).

53

4 PDEs as a Learning Problem

(A3) : For any ω1, ω2 ∈ Ω, it holds that

∥u∗(X T (ω1))−u∗(X T (ω2))∥Wk,q ≤ C∥L(u∗(X T (ω1)))−L(u∗(X T (ω2)))∥1, (4.24)

where the C > 0 is a constant and explicitly depends on ∥u∗(X T (ω1))∥∞ and
∥u∗(X T (ω2))∥∞.

Then, it holds that

E[∥u− u∗(X T)∥Wk,q] ≤ C ·
(
ET + ETV +

std∗
√
mV

)
, (4.25)

where we define

ET := E

[
1

mT

mT∑
i=1

∣∣L(u∗(X T))(XT
i)
∣∣] (4.26)

EV :=
1

mV

∫
DmT

mV∑
i=1

∣∣L(u∗(xT))(XV
i)
∣∣ dPXT (xT) (4.27)

ETV := E [|ET − EV |] (4.28)

and

std∗ :=

√√√√E[∣∣∣∣∫
DmT

∣∣L(u∗(xT))(XV
1)
∣∣ dPXT (xT)−

∫
D

∫
DmT

|L(u∗(xT))(x)|dPXT (xT)dx

∣∣∣∣2
]
.

(4.29)

Proof. First, we note that

ω 7→ 1

mV

∫
DmT

mV∑
i=1

∣∣L(u∗(xT))(XV
i (ω))

∣∣ dPXT (xT) (4.30)

is F/B(R)-measurable which implies that EV is a random variable, while ET ≥ 0 is not.
Further, we can compute

E[∥u− u∗(X T)∥Wk,q]

≤ C · E[∥L(u)− L(u∗(X T))∥1]
= C · E[∥L(u∗(X T))∥1]
≤ C · E

[∣∣E[∥L(u∗(X T))∥1]− EV + EV − ET + ET
∣∣]

≤ C ·
(
E
[∣∣E[∥L(u∗(X T))∥1]− EV

∣∣]+ E [|EV − ET |] + E [|ET |]
)

= C ·
(
ET + ETV + E

[∣∣E[∥L(u∗(X T))∥1]− EV
∣∣])

≤ C ·

(
ET + ETV +

√
E
[
|E[∥L(u∗(X T))∥1]− EV |2

])
,

(4.31)

54

4.3 PINNs as a Special Regularization Approach

where we used assumption (A3) in the first inequality, in the forth line the triangle
inequality, and in the sixth line Hölder’s inequality with 1

2 . To finish the prove, we
rewrite the term under the square root

E
[∣∣E[∥L(u∗(X T))∥1]− EV

∣∣2]
= E

∣∣∣∣∣
∫
DmT

∫
D
|L(u∗(xT))(x)|dxdPXT (xT)− 1

mV

∫
DmT

mV∑
i=1

∣∣L(u∗(xT))(XV
i)
∣∣ dPXT (xT)

∣∣∣∣∣
2

=
1

m2
V

mV∑
i=1

E

[∣∣∣∣∫
DmT

∫
D
|L(u∗(xT))(x)|dxdPXT (xT)−

∫
DmT

∣∣L(u∗(xT))(XV
i)
∣∣ dPXT (xT)

∣∣∣∣2
]

=
1

mV
E

[∣∣∣∣∫
D

∫
DmT

|L(u∗(xT))(x)|dPXT (xT)dx−
∫
DmT

∣∣L(u∗(xT))(XV
1)
∣∣ dPXT (xT)

∣∣∣∣2
]
,

(4.32)

where we utilized in the second line that (XV
i)mV

i=1 are independent random variables,
and in the third line that they are distributed identically, along with Fubini-Tonelli.

Using additional independent samples as X V for the evaluation of a trained neural
network to assist in the process of hyper-parameters selection (tuning) is a common
practise called validation, and it also aids in monitoring overfitting behavior in supervised
learning. One can even validate the model while training to adjust hyper-parameters
like step sizes inside of the optimization. For the estimate (4.25), the samples X V are
used to measure the gap ETV to the independent samples used for training X T , which
can be a good indicator of the generalisation capabilities of the PINN (cf. Definition
3.5.1), when using a well chosen amount of samples mV . Furthermore, the constant
C reflects the stability of the underlying PDE and depends on the boundedness of the
solution u as well as of the PINNs. The estimate (4.25) serves to relate the expected
error between the solution and PINNs to ET , the so-called expected training error of
the neural network, establishing a connection by leveraging the assumed stability of the
PDE. The expected training error is a good measure on how well we can fit the given
samples used for training, this bound strengthens our idea that a well-trained PINN
can be used to approximate a PDE. Recall that this is the same as asking for small
optimization error (cf. Proposition 2.4.9).

However, we note that this is rather meant to illustrate the mechanics of the PINN
algorithm and that an error estimate involves in practise more work including the aux-
iliary conditions directly. To get some concrete examples, we reference to Mishra [71],
where this error estimate is discussed on a few important initial/boundary-value problem
classes.

Remark 4.3.3 (Other Bounds on PINNs). Next to the presented estimate in Theorem
4.3.2, Mishra [71] also discusses an estimate for non-random points used in training,

55

4 PDEs as a Learning Problem

which can be applied for low dimensional PDEs. Instead of considering the expected
error, the estimate is computed for the error

∥u− u∗(xT)∥Wk,q , (4.33)

where xT are the mT points used in training, relating it to the training error(
mT∑
i=1

∣∣L(u∗(xT))(xT
i)
∣∣p) 1

p

. (4.34)

Details on this bound can be found in Mishra [71, Theorem 2.6]. Another work that
focuses on understanding the approximation capabilities of PINNs was done by Ryck
[73], which specifically examines Kolmogorov PDEs.

Remark 4.3.4 (Other Learning Strategies for PDEs with Neural Networks). In addition
to PINNs, alternative learning strategies for deep neural network have been widely used
in the numerical approximation of PDEs. One method involves the use of explicit or
semi-implicit representation formulas, such as the Feynman-Kac formula for parabolic
and elliptic PDEs. The compositional structure of these formulas can then be utilized for
approximation by deep neural networks. This approach has been presented and analyzed
for a range of parametric elliptic, parabolic, and linear transport PDEs (cf. for instance
Beck [63]).
Another approach in the use of deep learning for the numerical approximation of PDEs
involves augmenting existing numerical methods with deep learning-based modules. For
example, free parameters of numerical schemes can be learned from data using this ap-
proach (cf. for instance Mishra [56]).
A third strategy involves learning observables or quantities of interest of the solutions
to the underlying PDEs from data. This approach has been discussed in the context
of uncertainty quantification, PDE constrained optimization, and model order reduction
(cf. for instance Lye [61]).

56

5 Numerical Experiments

In this chapter, we investigate, through numerical experiments, whether PINNs, gen-
erated using our proposed Algorithm 4.3.1, are an appropriate choice for solving our
learning problem of PDEs. Additionally, we will evaluate how the results obtained from
different problem classes relate to the bound found in Theorem 4.3.2.
In contrast to the classical supervised learning task, we do not equip our neural network
with a large amount of samples during training. Therefore, we choose to run LBFGS (cf.
Liu [8]) as our optimization algorithm and search over learning rates from 1e-4 to 2. Note
that LBFGS needs a twice continuously differentiable activation function. Following
previous work (cf. Raissi [57]), we use the hyperbolic tangent function as the activation
function in our examples. So far, we have not mentioned the influence of the choice of the
initial parameters θ(0) of a neural network on the optimization. We choose to initialize
the weightsW (ℓ) and biases b(ℓ) in layer ℓ ∈ {1, ..., L} uniformly at random on the interval
[−
√

1/Nℓ−1,
√
1/Nℓ−1] to improve training speed and effectiveness by decreasing the risk

of convergence to sub-optimal minima. Additionally, we follow the common practice of
normalizing the input to ensure a smooth loss landscape (cf. LeCun [25]). Furthermore,
we disregard the choice of the hyper-parameter R > 0 of the hypothesis space of neural
networks since it is not necessary to manually specify a bound for the size of the neural
network parameters in practice. This is because they are automatically constrained by
the specific limitations of the computing environment. We apply the quadrature loss
function for training the PINNs and experiment with adding L2-regularizers to the loss
function, for different λ > 0. To fully understand the behavior of PINNs, one needs to
run experiments not only with a fixed neural network architecture but also allow the
parameters determining the neural network to be searched for. However, this is beyond
the scope of this thesis, which is why we pick reasonable architectures for each model
problem.
We will exclusively present 1-dimensional model problems and choose bounded intervals
U = (xL, xR) ⊂ R as the spatial domains. This leaves us with the boundary for values
of x as ∂U = {xL, xR}. Consequently, we will sample our samples used for training in
the following way:

1. Interior training samples (Xd
i)

md
i=1, i.i.d. uniformly distributed random variables on

(xL, xR)× (0, T).

2. Temporal boundary training samples (Xt
i)

mt
i=1 i.i.d. uniformly distributed random

variables on (xL, xR).

3. Spatial boundary training samples (Xs
i)

ms
i=1, i.i.d. uniformly distributed random

variables on {xL, xR} × [0, T] or for periodic boundary conditions on [0, T].

57

5 Numerical Experiments

For the weights λd and λs in the regularizer (4.20), we select both to be 1, resulting in
the abstract loss function

Υreg(θ) =
1

mt

mt∑
i=1

|δti |2 +
1

md

md∑
i=1

|δdi |2 +
1

ms

ms∑
i=1

|δsi |2, (5.1)

where δti , δ
d
i and δsi are the error terms of the initial condition, the differential operator,

and the boundary condition, respectively. All precise hyper-parameters used in training
of each example can be found in Tables 2, 3 and 4 in the Appendix.
To assess the performance of our numerical solutions in comparison to the actual so-
lutions (or suitable approximations, if they do not exist), of the PDEs in question, we
evaluate

1. the mean squared error (MSE),

2. the mean squared relative error (MSRE) modified with ϵ = 1,

3. and the maximum error (L∞)

between the functions, using Monte Carlo integration (cf. for instance Graham [38] and
Keller [33] on Monte Carlo integration) with 105 uniformly at random chosen samples
on the domain of the PDE. We also compute the empirical error of the trained neural
network with the points used for training (E2

T) to compare the relation with the errors as
in Theorem 4.3.2. Moreover, for each setting in the experiments, we run 10 independent
trials and present the results in the form of the mean and standard deviation.
The implementation for the experiments was written in the Python programming lan-
guage using the open-source deep learning package Pytorch, as well as the experiment
packages Ray and Weights&Biases. The experiments were implemented within a larger
framework that includes a version of the source code using the Hydra package (cf.
Yadan [59]) to enhance the efficiency of configuration planning for running multiple
experiments. Both versions of the source code for the experiments can be found at
https://github.com/.../theory2practise_ext. The experiments were executed on
a MacBook Air (2020) equipped with an Apple M1 chip.
For the sake of readability, we adapt the notation slightly in the following examples and
write uθ for the realization function RN,ϱ(·, θ).

5.1 Convection Equation

In our first experiment, we apply our algorithm to convection equations, a class of simple
linear problems,

ut + βux = 0, (5.2)

where β > 0 is called the convection coefficient. We choose a function φ ∈ C1([xL, xR])
as the initial condition, and study periodic boundary conditions

u(xL, t) = u(xR, t), ∀t ∈ [0, T]. (5.3)

58

5.1 Convection Equation

Problems of the form (5.2) with boundary condition (5.3) have an analytical solution
that can be derived using Fourier transforms

u(x, t) = F−1(F(φ(x))e−iβtk), (5.4)

where k denotes the frequency in the Fourier domain. We are interested to approximate
the solution u by training PINNs on the initial/boundary-value problem. For this exam-
ple, the regularized objective function that we want to minimize with neural networks
has error terms

δti = uθ(x
t
i, 0)− φ(xti)

δdi =
∂uθ
∂t

(xdi) + β
∂uθ
∂x

(xdi)

δsi = uθ(xL, x
s
i)− uθ(xR, x

s
i)).

(5.5)

We consider this problem with a maximal time of T = 1, in spatial domain U = (0, 2π),
with initial condition φ(x) = sin(x), and for different values of the convection coefficient
β ∈ {0.001, 0.01, 0.1, 1, 5, 10, 20, 30, 40, 50, 100, 200}, and with varying numbers of sam-
ples md ∈ {128, 256, 512, 1024, 2048} and mt = ms ∈ {32, 64, 128, 256}. Since our choice
of φ is periodic with period 2π and we have xR − xL = 2π, the solution

u(x, t) = sin(x− βt) (5.6)

satisfies all conditions of the PDE and is therefore used in the computation of the errors.
Training is performed with a 5-layer neural network and with neurons

N = (2, 50, 50, 50, 50, 1) (5.7)

for one optimizer step.

Tables 5.1-6 present the resulting mean squared relative error and maximum error be-
tween the model trained with the propsed algorithm and the exact solution of the PDE
with different values of β ∈ {1, 30, 50} and varying numbers of samples. We can observe
that in Table 5.1 and 5.2, the needed amount of samples to achieve a certain level of
performance is less than in Table 5.3 and 5.4 and certainly less than in Table 5.5 and 5.6.
Hence, we can reason that for more complex PDEs (cf. Figure 5.1), we might need higher
amounts of samples in training. Furthermore, it is apparent that even when sampling
amounts are scaled up, the error from the less complex PDE cannot be reached anymore
but saturates at an inferior level. This indicates that sheer scaling efforts must not be
rewarded with better accuracies. Intuitively, we would assume that with higher amounts
of samples, the errors would go down or at least stay at a similar level. However, due to
numerical variation in neural network training, we cannot always be certain to face this
situation and meet natural fluctuations. When we take a look at the maximum error, it
is also clear that at β = 50, the PINN is no longer a valid option for approximating the
PDE, as the maximum error surpasses the maximal absolute value of the solution itself.

In Table 5.7, we have selected the best observed sampling amounts and shown the

59

5 Numerical Experiments

resulting errors for scaling in the convection coefficient β. With an increase of complexity
and samples, the optimization algorithm needs more iterations, which we can see in the
time differences. Moreover, we can still observe a relationship between training error
and other errors in Table 5.7, as suggested by the results of the theorem. Furthermore,
in Figure 5.2, we recognize that after β = 10, the errors start to grow quickly, which
might be explained by the complexity, but can also be understood as a result of rougher
loss landscapes that require more sophisticated initialization methods (cf. Krishnapriyan
[66]). Hence, we can argue that even that the bound from Theorem 4.3.2 promises good
results for well-trained PINNs, we still need to make sure that our algorithm is well-
prepared to reach the required levels, which requires special attention, e.g. with naive
tools like splitting the time domain in smaller pieces and learning for each time interval
individually (cf. Krishnapriyan [66]).

md

mt/ms 16 32 64 128

32 0.0208+/-0.0179 0.0136+/-0.0046 0.0109+/-0.0051 0.0107+/-0.0039

64 0.0093+/-0.0049 0.0057+/-0.0012 0.0039+/-0.0013 0.0045+/-0.0015

128 0.0059+/-0.0027 0.0043+/-0.0010 0.0047+/-0.0019 0.0035+/-0.0003

256 0.0101+/-0.0041 0.0041+/-0.0022 0.0039+/-0.0006 0.0033+/-0.0007

Table 5.1: Convection MSRE with β = 1.

md

mt/ms 16 32 64 128

32 0.1062+/-0.0199 0.0664+/-0.0239 0.0857+/-0.0455 0.0806+/-0.0376

64 0.0473+/-0.0209 0.0339+/-0.0153 0.0454+/-0.0268 0.0327+/-0.0049

128 0.0313+/-0.0081 0.0210+/-0.0044 0.0210+/-0.0075 0.0170+/-0.0035

256 0.0459+/-0.0165 0.0174+/-0.0039 0.0173+/-0.0058 0.0117+/-0.0028

Table 5.2: Convection L∞ with β = 1.

md

mt/ms 64 128 256 512

512 0.3548+/-0.1243 0.2356+/-0.1771 0.1440+/-0.1641 0.1714+/-0.1585

1024 0.3777+/-0.0262 0.1728+/-0.1613 0.0236+/-0.0101 0.0536+/-0.0836

2048 0.3397+/-0.1323 0.0579+/-0.0885 0.0298+/-0.0636 0.0239+/-0.0187

4196 0.3033+/-0.1232 0.0481+/-0.0167 0.0239+/-0.0187 0.0188+/-0.0077

Table 5.3: Convection MSRE with β = 30.

60

5.1 Convection Equation

md

mt/ms 64 128 256 512

512 1.0150+/-0.3700 0.7305+/-0.4927 0.4757+/-0.4720 0.5422+/-0.5058

1024 1.1290+/-0.0112 0.6259+/-0.4545 0.1941+/-0.2556 0.2236+/-0.3416

2048 1.0130+/-0.2919 0.2689+/-0.3191 0.1391+/-0.0686 0.1346+/-0.0289

4196 0.9867+/-0.3068 0.1792+/-0.0683 0.1991+/-0.3018 0.0967+/-0.0481

Table 5.4: Convection L∞ with β = 30.

md

mt/ms 64 128 256 512

512 0.4782+/-0.0543 0.4343+/-0.0833 0.4248+/-0.0685 0.3428+/-0.0423

1024 0.5886+/-0.0725 0.4055+/-0.0717 0.3995+/-0.0665 0.3137+/-0.0028

2048 0.4723+/-0.1269 0.3697+/-0.0479 0.3327+/-0.0578 0.3168+/-0.0208

4196 0.5370+/-0.1418 0.3588+/-0.0565 0.3288+/-0.0174 0.3198+/-0.0214

Table 5.5: Convection MSRE with β = 50.

md

mt/ms 64 128 256 512

512 1.5550+/-0.0841 1.4210+/-0.3422 1.3360+/-0.3266 1.1780+/-0.1269

1024 1.7811+/-0.1670 1.5100+/-0.2718 1.4062+/-0.2584 1.0500+/-0.0282

2048 1.5040+/-0.4078 1.2300+/-0.1835 1.1620+/-0.1833 1.0530+/-0.0548

4196 1.6040+/-0.3331 1.2270+/-0.2159 1.0630+/-0.0447 1.0520+/-0.0418

Table 5.6: Convection L∞ with β = 50.

61

5 Numerical Experiments

(a) Exact for β = 1 (b) Exact for β = 30 (c) Exact for β = 50

(d) PINN for β = 1 (e) PINN for β = 30 (f) PINN for β = 50

Figure 5.1: Exact and PINN solutions of the convection PDE as heatmaps. PINNs were
trained with the best combinations observed for md and ms = mt samples.

Figure 5.2: Convection MSRE (orange) and L∞ (blue) with scaling β.

62

5.2 Heat Equation

β Time [s] MSE MSRE L∞ E2
T

0.001 1.62 0.0052+/-0.0011 0.0036+/-0.0007 0.0150+/-0.0034 6.4e-05+/-2.9e-05
0.01 1.29 0.0044+/-0.0012 0.0029+/-0.0007 0.0115+/-0.0030 6.2e-05+/-2.9e-05
0.1 1.73 0.0076+/-0.0029 0.0052+/-0.0019 0.0210+/-0.0082 9.4e-05+/-5.2e-05
1 1.69 0.0062+/-0.0018 0.0033+/-0.0007 0.0117+/-0.0028 1.1e-04 +/-3.4e-05
5 5.01 0.0079+/-0.0027 0.0052+/-0.0018 0.0281+/-0.0095 1.1e-04 +/-4.7e-05
10 19.73 0.0054+/-0.0027 0.0034+/-0.0018 0.0185+/-0.0079 6.1e-05 +/-2.7e-05
20 69.41 0.0225+/-0.0109 0.0142+/-0.0069 0.0714+/-0.0312 2.7e-04 +/-1.6e-04
30 116.08 0.0301+/-0.0131 0.0188+/-0.0077 0.0967+/-0.0481 2.4e-04 +/-1.3e-04
40 112.09 0.3709+/-0.2229 0.2056+/-0.1204 0.8043+/-0.4312 0.0108 +/-0.0078
50 128.17 0.5695+/-0.0430 0.3198+/-0.0214 1.0520+/-0.0418 0.0128 +/-0.0029
100 100.30 0.6805+/-0.0118 0.3762+/-0.0076 1.1320+/-0.0734 0.0103 +/-0.0018
200 153.21 0.7044+/-0.0122 0.3900+/-0.0093 1.1390+/-0.0597 0.0096 +/-0.0017

Table 5.7: Selected errors and average wall time for the convection PDE with sample
amounts md = 256 and ms = mt = 128 for β ∈ {0.001, 0.01, 0.1, 1, 5}, and
md = 4196 and ms = mt = 512 for upper β.

5.2 Heat Equation

Let us now turn towards a problem with another differential operator. We will be
examining a linear class of problems known as heat equations with varying diffusivity
constant α > 0,

ut = α∆u. (5.8)

As the initial condition, we will select a function φ ∈ Ck((xL, xR)) with k ≥ 2, and we
will study zero Dirichlet boundary conditions

u(xL, t) = u(xR, t) = 0, ∀t ∈ [0, T]. (5.9)

It is important to note that in general, if we allow for φ ∈ W k+1,2((xL, xR)), then the
existence and uniqueness of a solution in W k,2((xL, xR) × (0, T)) can be proven (cf.
for instance Friedman [3]). With our assumption on φ and for fixed α, the PDE even
possesses a solution in the classical sense (cf. for instance Cannon [4]), namely

u(x, t) =

∫ ∞

−∞

e
−(x−s)2

4αt

√
4παt

φ(s)ds. (5.10)

We can use the properties of the integral identity of equation (5.10) to approximate the
true solution function u of the initial/boundary-value problem by numerical integration.
This approximation can be used to measure how well the PINN approximates the solution
u. The regularized objective function that we seek to minimize using neural networks

63

5 Numerical Experiments

includes error terms

δti = uθ(x
t
i, 0)− φ(xti)

δdi =
∂uθ
∂t

(xdi)− α
∂2uθ
∂x2

(xdi)

δsi = uθ(x
s
i).

(5.11)

We consider the problem in the temporal domain until T = 1 and spatial domain of
U = (−5, 5), with the bump function restricted to the interval [−3, 3] as our initial
condition,

φ(x) = 1[−3,3]e
− 1

1−(x/3)2 (5.12)

and choose the diffusivity coefficients α ∈ {1, 2, 3, 4, 5}.

To train the neural network, we use varying numbers md ∈ {32, 64, 128, 256, 512} for
spatial and consequently mt = ms ∈ {16, 32, 64, 128, 256} for temporal and boundary
samples. The neural network used for training is a 5-layer architecture with neurons

N = (2, 20, 20, 20, 20, 1) (5.13)

and was trained for one optimizer step. Additionally, we apply L2-regularization with
λ = 10−6.

Using our algorithm with these specific configurations mentioned, we compare the mean
squared relative error and maximum error for different sampling amounts for ms = mt

and for α ∈ {1, 3, 5} in Tables 5.8-13. Unlike in the earlier example, the complexity in
these three values for α does not vary as much (cf. Figure 5.3). However, we still observe
an increase in the mean squared relative error with increasing α, which might be caused
by the slightly rising complexity of the solution. On the other hand, the maximum error
remains constant over all three PDEs due to the similar nature of the solutions. The
early saturation in errors in Table 5.8-13 further confirms our observations from the
earlier example and raises the question of whether we can achieve similar performances
by fixing either md or ms = mt, thereby forcing an imbalance in the training data.
Figure 5.4 displays the average errors for a fixed md over multiple trials with α = 5,
allowing the samples ms = mt to be in the range mentioned above. Not only does the
average error saturate, but the deviation also decreases. This indicates that the ratio
between md and ms = mt plays a significant role, as we need md to surpass a certain
threshold for the best results. Furthermore, this behavior is expected since we assume an
increase in robustness and better generalization capabilities of the PINN with growing
variation in input data. Table 5.14 compares the selected errors for the best performing
sample variation over α ∈ {1, 2, 3, 4, 5}. We can see that the ratio between the errors
L∞ and E2

T fluctuates little, while the mean squared error and mean squared relative
error do scale up in α, which suggests the relationship developed from Theorem 4.3.2.

64

5.2 Heat Equation

md

mt/ms 16 32 64 128

32 0.0134+/-0.0055 0.0069+/-0.0017 0.0076+/-0.0031 0.0132+/-0.0061

64 0.0105+/-0.0037 0.0045+/-0.0011 0.0059+/-0.0022 0.0055+/-0.0012

128 0.0092+/-0.0056 0.0069+/-0.0013 0.0049+/-0.0007 0.0036+/-0.0012

256 0.0098+/-0.0063 0.0068+/-0.0031 0.0051+/-0.0013 0.0045+/-0.0005

Table 5.8: Heat MSRE with α = 1.

md

mt/ms 16 32 64 128

32 0.1000+/-0.0561 0.0916+/-0.0641 0.0553+/-0.0509 0.1744+/-0.1420

64 0.0565+/-0.0196 0.0531+/-0.0481 0.0461+/-0.0141 0.0749+/-0.0829

128 0.0682+/-0.0415 0.1325+/-0.0574 0.1115+/-0.0896 0.0765+/-0.0770

256 0.1534+/-0.1600 0.0620+/-0.0325 0.0698+/-0.0344 0.0491+/-0.0113

Table 5.9: Heat L∞ with α = 1.

md

mt/ms 16 32 64 128

32 0.0176+/-0.0059 0.0172+/-0.0155 0.0153+/-0.0042 0.0195+/-0.0119

64 0.0121+/-0.0046 0.0118+/-0.0048 0.0085+/-0.0020 0.0089+/-0.0031

128 0.0093+/-0.0025 0.0081+/-0.0011 0.0073+/-0.0008 0.0069+/-0.0009

256 0.0149+/-0.0119 0.0079+/-0.0011 0.0075+/-0.0076 0.0071+/-0.0003

Table 5.10: Heat MSRE with α = 3.

md

mt/ms 16 32 64 128

32 0.0708+/-0.0307 0.1054+/-0.1031 0.0522+/-0.0087 0.0685+/-0.0297

64 0.0865+/-0.0577 0.0449+/-0.0069 0.0537+/-0.0338 0.1139+/-0.1260

128 0.0674+/-0.0275 0.0777+/-0.0485 0.0347+/-0.0032 0.0368+/-0.0039

256 0.1029+/-0.0686 0.0610+/-0.0427 0.0451+/-0.0111 0.0448+/-0.0109

Table 5.11: Heat L∞ with α = 3.

65

5 Numerical Experiments

md

mt/ms 16 32 64 128

32 0.0253+/-0.0168 0.0288+/-0.0101 0.0277+/-0.0098 0.0235+/-0.0074

64 0.0181+/-0.0056 0.0127+/-0.0009 0.0145+/-0.0043 0.0133+/-0.0016

128 0.0157+/-0.0029 0.0136+/-0.0015 0.0124+/-0.0004 0.0124+/-0.0004

256 0.0135+/-0.0006 0.0127+/-0.0005 0.0124+/-0.0003 0.0124+/-0.0002

Table 5.12: Heat MSRE with α = 5.

md

mt/ms 16 32 64 128

32 0.0952+/-0.0528 0.0779+/-0.0279 0.0810+/-0.0209 0.0816+/-0.0376

64 0.0914+/-0.0298 0.0879+/-0.0625 0.0544+/-0.0036 0.0654+/-0.0318

128 0.0638+/-0.0119 0.0523+/-0.0024 0.0579+/-0.0127 0.0908+/-0.0871

256 0.0854+/-0.0607 0.0451+/-0.0035 0.0539+/-0.0018 0.0527+/-0.0023

Table 5.13: Heat L∞ with α = 5.

(a) Exact for α = 1 (b) Exact for α = 3 (c) Exact for α = 5

(d) PINN for α = 1 (e) PINN for α = 3 (f) PINN for α = 5

Figure 5.3: Exact and PINN solutions of the heat PDE as heatmaps. PINNs were trained
with md = 256 and ms = mt = 128 samples.

66

5.2 Heat Equation

Figure 5.4: Heat MSRE (yellow) and L∞ (green) with α = 5 for varying sample amounts,
averaged over different ms = mt.

α Time [s] MSE MSRE L∞ E2
T

1 1.11 0.0049+/-0.0006 0.0045+/-0.0005 0.0491+/-0.0113 2.8e-04+/-6.5e-05
2 1.10 0.0058+/-0.0004 0.0054+/-0.0003 0.0543+/-0.2820 4.7e-04+/-3.7e-05
3 1.94 0.0076+/-0.0004 0.0071+/-0.0003 0.0448+/-0.0109 3.3e-04+/-7.2e-05
4 2.62 0.0103+/-0.0002 0.0096+/-0.0002 0.0559+/-0.0272 4.2e-04+/-5.6e-05
5 2.69 0.0133+/-0.0003 0.0124+/-0.0002 0.0527+/-0.0023 3.7e-04+/-6.2e-05

Table 5.14: Selected errors and average wall time for the heat PDE with sample amounts
md = 256 and ms = mt = 128.

67

5 Numerical Experiments

5.3 Burgers’ Equation

Finally, we examine the well-known viscous and inviscid Burgers’ equation, which is a
slightly more complicated class of quasi-linear problems,

ut + uux = νuxx (5.14)

with the viscosity coefficient 0 < ν ≪ 1 for the viscous version and ν = 0 in the inviscid
case. Once again, we choose a function φ ∈ Ck([xL, xR]) with k ≥ 1 as the initial
condition and study zero Dirichlet boundary conditions

u(xL, t) = u(xR, t) = 0, ∀t ∈ [0, T]. (5.15)

By applying the Cole-Hopf transformation to the viscous case, the problem (5.14) can
be converted to a linear equation and solved in the classical sense (cf. for instance Evans
[34]). Given the solution and inverting the transformation, we obtain

u(x, t) = −2ν
∂

∂x
ln

(
1√
4πνt

∫ ∞

−∞
e

−(x−s)2

4νt
− 1

2ν

∫ s
0 φ(r)drds

)
. (5.16)

The inviscid case can only be solved if the initial condition does not produce shock waves,
which we are interested in.

In both cases, we discretize the space and time variables and apply finite difference
methods (cf. for instance Thomas [17]) to obtain an approximation to the solutions. We
then use this approximation to measure the performance of the PINN. Hence, in this
example, the samples used in the computation of the errors are chosen from a discrete
set.

The specific error terms are

δti = uθ(x
t
i, 0)− φ(xti)

δdi =
∂uθ
∂t

(xdi) + uθ(x
d
i)
∂uθ
∂x

(xdi)− ν
∂2uθ
∂x2

(xdi)

δsi = uθ(x
s
i).

(5.17)

For this example, we choose the maximal time of T = 1 and the spatial domain of
U = (−1, 1). The initial condition is given by

φ(x) = − sin(πx) (5.18)

and we consider the viscosity coefficient ν = 0.01
π for the viscous case.

To train the PINN with our algorithm, we utilize varying numbers of spatial samples
md ∈ {1024, 2048, 4096, 8192, 16384, 32768}, while choosing the amount for temporal and
boundary samples as ms = mt ∈ {64, 128, 256, 512, 1024}. The neural network employed

68

5.3 Burgers’ Equation

for training uses neurons

N = (2, 20, 20, 20, 20, 20, 20, 20, 20, 1) (5.19)

for one optimizer step.

We present the numerical results in form of mean squared relative error and maximum
error for various combinations of the sampling amounts in tables 5.15-5.18 for both the
viscous and inviscid case. We notice immediately that only high numbers for md and
auxiliary conditions result in saturating errors for the viscous case. Further, in the
inviscid case, we face saturation sooner, but at relatively high level. Therefore, we can
rule out PINNs as a valid choice for an approximator of this problem with our chosen
setting. Neither the mean squared relative error nor the maximum error seem to decrease
by raising the number of samples. Moreover, the maximum error exceeds the solution’s
absolute value range. The gap between the performance for the different ν values might
be explained by the nature of the physical phenomenon, which develops in our inviscid
case shocks and seams to be much harder to learn (cf. Figure 5.5 and Figure 5.6).
Here again, we see that there are some PDEs where a PINN is not capable of capturing
the conditions. Moreover, it is reasonable to classify the Burgers’ equation as a more
complex task to learn compared to the earlier problems, which gives an indication of the
requirement of higher data sample amounts in more complex PDEs.

Table 5.19 shows our selected errors and computing time for the best performing com-
binations of sampling amounts. Even that the errors for the viscous case are somewhat
promising, we must take into account the high computational effort and the fact that
md = 32768 and ms = mt = 1024 include unreasonable high amounts of details for the
chosen domain U × (0, T) = (−1, 1)× (0, 1).

md

mt/ms 128 256 512 1024

1024 0.1098+/-0.0290 0.0694+/-0.0385 0.0770+/-0.0396 0.0652+/-0.0292

2048 0.0557+/-0.0339 0.0559+/-0.0179 0.0693+/-0.0618 0.0599+/-0.0408

4096 0.0502+/-0.0203 0.0484+/-0.0169 0.0392+/-0.0049 0.0388+/-0.0145

8192 0.0473+/-0.0283 0.0189+/-0.0094 0.0439+/-0.0437 0.0166+/-0.0161

16382 0.0693+/-0.0203 0.0467+/-0.0202 0.0168+/-0.0098 0.0075+/-0.0025

32768 0.0643+/-0.0158 0.0257+/-0.0151 0.0235+/-0.0140 0.0071+/-0.0021

Table 5.15: Burger MSRE with ν = 0.01
π .

69

5 Numerical Experiments

md

mt/ms 128 256 512 1024

1024 1.9400+/-0.6537 1.4190+/-0.5577 1.5660+/-0.5441 1.5730+/-0.3001

2048 1.2500+/-0.6175 1.3240+/-0.3079 0.9926+/-0.5393 1.2100+/-0.5838

4096 1.1030+/-0.4395 1.2460+/-0.3872 0.9299+/-0.1763 1.0130+/-0.3489

8192 0.9361+/-0.5111 0.5367+/-0.2879 0.7458+/-0.4221 0.4298+/-0.4277

16382 1.5000+/-0.2994 1.2470+/-0.3780 0.4583+/-0.2715 0.1691+/-0.0659

32768 1.3890+/-0.3960 0.7290+/-0.4341 0.5292+/-0.2722 0.2002+/-0.0812

Table 5.16: Burger L∞ with ν = 0.01
π .

md

mt/ms 128 256 512 1024

1024 0.1300+/-0.0164 0.1255+/-0.0083 0.1224+/-0.0456 0.1140+/-0.0175

2048 0.1391+/-0.0072 0.1295+/-0.0067 0.1348+/-0.0129 0.1335+/-0.0321

4096 0.1198+/-0.0298 0.1383+/-0.0128 0.1340+/-0.0124 0.1391+/-0.0078

8192 0.1247+/-0.0414 0.1299+/-0.0067 0.1355+/-0.0017 0.1399+/-0.0009

Table 5.17: Burger MSRE with ν = 0.

md

mt/ms 128 256 512 1024

1024 1.6680+/-0.4316 1.4840+/-0.4489 1.6400+/-0.1254 1.767+/-0.1274

2048 1.4950+/-0.4095 1.2790+/-0.2770 1.5220+/-0.1770 1.612+/-0.1105

4096 1.2500+/-0.2692 1.4140+/-0.2663 1.6910+/-0.2661 1.511+/-0.4115

8192 1.4510+/-0.4710 1.6390+/-0.1760 1.5050+/-0.0874 1.395+/-0.0341

Table 5.18: Burger L∞ with ν = 0.

70

5.3 Burgers’ Equation

(a) t = 0.25 (b) t = 0.5 (c) t = 0.75

Figure 5.5: Exact (blue) and PINN (red) solutions of the viscious Burgers’ equation.
PINNs were trained with md = 32786 and ms = mt = 1024 samples.

(a) t = 0.25 (b) t = 0.5 (c) t = 0.75

Figure 5.6: Exact (blue) and PINN (red) solutions of the inviscid Burgers’ equation.
PINNs were trained with md = 32786 and ms = mt = 1024 samples.

ν Time [s] MSE MSRE L∞ E2
T

0.01/π 486.39 0.0113+/-0.0024 0.0071+/-0.0021 0.2002+/-0.0812 0.6237+/-0.1953
0 375.82 0.2442+/-0.0302 0.1289+/-0.0115 1.2380+/-0.2210 0.5163+/-0.2316

Table 5.19: Selected errors and average wall time for the Burgers’ equation with sample
amounts md = 32768 and ms = mt = 1024.

71

6 Conclusion

In this thesis, we demonstrated physics-informed neural networks as a special case of
regularization techniques in neural networks and embedded them within the framework
of mathematical learning theory. Our numerical analysis in Chapter 5 on three differ-
ent types of partial differential equations revealed promising results for simple problems,
such as the convection equation with a low coefficient and heat equation, with a relatively
small amount of training data. However, we also encountered limitations in capturing
the underlying phenomena and approximating solutions to a satisfactory degree of ac-
curacy for more complex examples. Despite our efforts to improve the performance by
scaling up the amount of training data, we found that this method alone does not re-
sult in arbitrarily good error rates, which seemingly saturated at certain levels for all
discussed examples. We note that further optimization through hyper-parameter tuning
and different initialization methods could achieve even better results then we presented.
The more complex problems also presented challenges in terms of the unreasonable high
amount of training data required, where traditional numerical mathematical methods
are more practical at present. Nevertheless, our results confirmed the relationship be-
tween the use of a regularized loss and the approximation capabilities of physics-informed
neural networks, making them a promising avenue for future research.
In conclusion, we can state that for the model problems considered in this study, physics-
informed neural networks should not be considered as a main approximator and analyt-
ical solutions or efficient numerical approximation methods are preferable.
It is worth noting that the application of neural networks as solvers for physical phe-
nomena is a relatively new field of research when compared to the long history of efforts
in classical numerical mathematics. Nevertheless, the promising results achieved thus
far and the growing trend in applying deep learning to PDEs (cf. for instance Mishra
[56], Ryck [73] and Shin [62]), offer great hope for future advancements. Some efforts
aim to overcome current limitations (cf. Krishnapriyan [66]) and other studies explore
different strategies for improvement (cf. Beck [63]). Additionally, ongoing theoretical
developments continue to deepen our understanding of the capabilities and potential of
these methods (cf. for instance Mishra [71], Ryck [73] and Shin [62]).

72

Appendices

73

.1 Hyper-parameters used in Numerical Experiments

Description Value Variable

Architecture
input 2 N0

output 1 NL

parameter initialization (W (ℓ), b(ℓ)) U([−
√
1/Nℓ−1,

√
1/Nℓ−1])

activation function tanh ϱ
Optimization
algorithm L-BFGS
maximal number of iterations 106

tolerance on first order optimality 1.0e-7
tolerance on function changes 1.0e-7
update history size 50
line search function Wolfe
optimization steps 1
Evaluation
number of samples 105

evaluation errors MSE, MSRE, L∞

Table 1: General hyper-parameters of the experiments in Chapter 5.

Description Value Variable

Architecture
depth 5 L
width 50 Nℓ

Experiment
spatial samples {128, 256, 512, 1024, 2048} md

boundary condition samples {32, 64, 128, 256} ms

initial condition samples {32, 64, 128, 256} mt

learning rate 1.5
spatial domain (0, 2π) U
time maximum 1 T

Table 2: Hyper-parameters of the experiments in Section 5.1.

74

.1 Hyper-parameters used in Numerical Experiments

Description Value Variable

Architecture
depth 5 L
width 20 Nℓ

Experiment
spatial samples {32, 64, 128, 512} md

boundary condition samples {16, 32, 64, 128, 256} ms

initial condition samples {16, 32, 64, 128, 256} mt

learning rate 1
spatial domain (−5, 5) U
time maximum 1 T
Regularization
L2-regularization 10−6 λ

Table 3: Hyper-parameters of the experiments in Section 5.2.

Description Value Variable

Architecture
depth 9 L
width 20 Nℓ

Experiment
spatial samples {1024, 2048, 4096, 8192, 16382, 32768} md

boundary condition samples {64, 128, 256, 512, 1024} ms

initial condition samples {64, 128, 256, 512, 1024} mt

learning rate 1
spatial domain (−1, 1) U
time maximum 1 T

Table 4: Hyper-parameters of the experiments in Section 5.3.

75

Bibliography

[1] W. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous
activity”. In: The bulletin of mathematical biophysics 5(4) (1943), pp. 115–133.

[2] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain”. In: Psychological Review 65.6 (1958), pp. 386–
408.

[3] A. Friedman. Partial differential equations of the parabolic type. prentice hall, 1964.

[4] J. R. Cannon. The one-dimensional heat equation. Vol. 23. Cambridge University
Press, 1984.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by
back-propagating errors”. In: Nature 323 (1986), pp. 533–536.

[6] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Math.
Control Signal Systems 2 (1989), pp. 303–314.

[7] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward networks are
universal approximators”. In: Neural Networks 2(5) (1989), pp. 359–366.

[8] D. C. Liu and J. Nocedal. “On the Limited Memory Method for Large Scale
Optimization”. In: Mathematical Programming 45(3) (1989), pp. 503–528.

[9] E. K. Blum and L. K. Li. “Approximation theory and feedforward networks”. In:
Neural networks 4(4) (1991), pp. 511–515.

[10] W. Rudin. Functional analysis. second. International Series in Pure and Applied
Mathematics. New York: McGraw-Hill, Inc., 1991.

[11] M. Leshno et al. “Multilayer feedforward networks with a nonpolynomial activation
function can approximate any function”. In: Neural networks 6(6) (1993), pp. 861–
867.

[12] H. N. Mhaskar. “Approximation properties of a multilayered feedforward artificial
neural network”. In: Adv. Comput. Math. 1(1) (1993), pp. 61–80.

[13] M. Dissanayake and N. Phan-Thien. “Neural-network-based approximations for
solving partial differential equations”. In: Communications in Numerical Methods
in Engineering (1994).

[14] G. Folland. Introduction to Partial Differential Equations. second. Princeton Uni-
versity Press, 1995.

[15] I. Lagaris, A. Likas, and D. Fotiadis. “Artificial neural networks for solving ordinary
and partial differential equations”. In: IEEE Transactions on Neural Networks 9(5)
(1998), pp. 987–1000.

76

Bibliography

[16] F. Scarselli and A. C. Tsoi. “Universal approximation using feedforward neural
networks: A survey of some existing methods, and some new results”. In: Neural
networks 11(1) (1998), pp. 15–37.

[17] J. Thomas. Numerical Partial Differential Equations: Finite Difference Methods.
second. Vol. 22. Texts in Applied Mathematics. Springer, 1998.

[18] V. Vapnik. Statistical learning theory. Vol. 3. New York: Wiley, 1998.

[19] M. Anthony and P. Bartlett. Neural network learning: theoretical foundations.
Cambridge: Cambridge University Press, 1999.

[20] V. Maiorov and A. Pinkus. “Lower bounds for approximation by MLP neural
networks”. In: Neurocomputing 25(1-3) (1999), pp. 81–91.

[21] N. Qian. “On the momentum term in gradient descent learning algorithms”. In:
Neural Networks 12(1) (1999), pp. 145–151.

[22] R. Ash and C. Doleans-Dade. Probability and Measure Theory. Harcourt/Academic
Press, 2000.

[23] D. P. Bertsekas and J. N. Tsitsiklis. “Gradient convergence in gradient methods
with errors”. In: SIAM Journal on Optimization 10 (2000), pp. 627–642.

[24] F Cucker and S Smale. “On the Mathematical Foundations of Learning”. In: Bul-
letin of the American mathematical society 39 (2002), pp. 1–49.

[25] Y. LeCun et al. “Efficient backprop”. In: Neural networks: Tricks of the trade.
Springer, 2002, pp. 9–50.

[26] A.N. Iusem. “On the convergence properties of the projected gradient method”.
In: Computational Applied Mathematics 22(1) (2003), pp. 37–52.

[27] T Poggio and S Smale. “The Mathematics of Learning: Dealing with Data”. In:
Notice of the American mathematical Society 50 (2003), pp. 537–544.

[28] M. Renardy and R. Rogers. An Introduction to Partial Differential Equations.
second. Vol. 13. Texts in Applied Mathematics. Springer, 2004.

[29] K. Morton and D. Mayers. Numerical Solution of Partial Differential Equations:
An Introduction. second. Cambridge: Cambridge University Press, 2005.

[30] C. M. Bishop. Pattern recognition and machine learning. Information Science and
Statistics. New York: Springer, 2006.

[31] W. Rudin. Real and complex analysis. Tata McGraw-Hill Education, 2006.

[32] C. Aliprantis and K. Border. Infinite Dimensional Analysis: A Hitchhiker’s Guide.
Springer, 2007.

[33] S. Keller A. Heinrich and H. Niederreiter. Monte Carlo and Quasi-Monte Carlo
Methods. Springer Berlin Heidelberg, 2007.

[34] L. Evans. Partial Differential Equations. Vol. 19. American Mathematical Society,
2010.

77

Bibliography

[35] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations.
New York: Springer, 2011.

[36] A. Ruszczynski. Nonlinear Optimization. Princeton University Press, 2011.

[37] P. Billingsley. Probability and Measure. Wiley Series in Probability and Statistics.
Wiley, 2012.

[38] C. Graham and D. Talay. Stochastic Simulation and Monte Carlo Methods: Math-
ematical Foundations of Stochastic Simulation. Stochastic Modelling and Applied
Probability. Springer Berlin Heidelberg, 2013.

[39] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics. New York:
Springer, 2013.

[40] O. Shamir and T. Zhang. “Stochastic gradient descent for non-smooth optimiza-
tion: Convergence results and optimal averaging schemes”. In: International Con-
ference on Machine Learning (2013), pp. 71–79.

[41] I. Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Infor-
mation Processing Systems 3(11) (2014).

[42] D Kingma and J Ba. “Adam: A Method for Stochastic Optimization”. In: Inter-
national Conference on Learning Representations (2014).

[43] A. Klenke. Probability theory. second. Universitext. London: Springer, 2014.

[44] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From The-
ory to Algorithms. Cambridge university press, 2014.

[45] N. Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–
1958.

[46] P. Cannarsa and D’Aprile. Introduction to Measure Theory and Functional Anal-
ysis. Unitext. Springer International Publishing, 2015.

[47] Y. LeCun, Y. Bengio, and G. Hinton. “Deep Learning”. In: Nature 521 (2015),
pp. 436–444.

[48] S. Ruder. “An overview of gradient descent optimization algorithms”. In: arXiv
preprint arXiv:1609.04747 (2016).

[49] L. N. Smith. “Cyclical Learning Rates for Training Neural Networks”. In: IEEE
Winter Conference on Applications of Computer Vision (2017), pp. 464–472.

[50] L. N. Smith and N. Topin. “Super-Convergence: Very Fast Training of Resid-
ual Networks Using Large Learning Rates”. In: arXiv preprint arXiv:1708.07120
(2017).

[51] K. Eykholt et al. “Robust Physical-World Attacks on Deep Learning Visual Clas-
sification”. In: Conference on Computer Vision and Pattern Recognition (2018),
pp. 1625–1634.

78

Bibliography

[52] A. Jentzen et al. “Strong error analysis for stochastic gradient descent optimization
algorithms”. In: arXiv preprint arXiv:1801.09324 (2018).

[53] M. Raissi and G. Karniadakis. “Hidden physics models: Machine learning of non-
linear partial differential equations”. In: Journal of Computational Physics 357
(2018), pp. 125–141.

[54] D. Silver et al. “A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play”. In: Science 362(6419) (2018), pp. 1140–1144.

[55] C. Berner et al. “Dota 2 with Large Scale Deep Reinforcement Learning”. In:
Preprint, available from arXiv:1912.06680 (2019).

[56] S. Mishra. “A machine learning framework for data driven acceleration of computa-
tions of differential equations”. In: Mathematics in Engineering 1 (2019), pp. 118–
146.

[57] M. Raissi, P. Perdikaris, and G. Karniadakis. “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations”. In: Journal of Computational Physics 378
(2019), pp. 686–707.

[58] C. Shorten and T. M. Khoshgoftaar. “A survey on Image Data Augmentation for
Deep Learning”. In: Big Data 6.60 (2019).

[59] O. Yadan. Hydra - A framework for elegantly configuring complex applications.
Github. 2019. url: https://github.com/facebookresearch/hydra.

[60] T. Brown et al. “Language Models are Few-Shot Learners”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 1877–1901.

[61] K. Lye, S. Mishra, and D. Ray. “Deep learning observables in computational fluid
dynamics”. In: Journal of Computational Physics 410 (2020), p. 109339.

[62] Y. Shin, J. Darbon, and G. Karniadakis. “On the Convergence and generalization
of Physics Informed Neural Networks”. In: Preprint, available from arXiv:2004.01806v1
(2020).

[63] C. Beck et al. “Artificial neural networks for solving ordinary and partial differen-
tial equations”. In: Journal of Scientific Computing 88(73) (2021).

[64] A. Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale”. In: International Conference on Learning Representations
(2021).

[65] J. Jumper, R. Evans, A. Pritzel, et al. “Highly accurate protein structure prediction
with AlphaFold”. In: Nature 596 (2021), pp. 583–589.

[66] A. S. Krishnapriyan et al. “Characterizing possible failure modes in physics-informed
neural networks”. In: Advances in Neural Information Processing Systems 34 (2021).

[67] P. Petersen, M. Raslan, and F. Voigtlaender. “Topological properties of the set of
functions generated by neural networks of fixed size”. In: Foundations of Compu-
tational Mathematics 21 (2021), pp. 375–444.

79

Bibliography

[68] J. Berner, P. Grohs, and Voigtlaender F. “Training ReLU networks to high uniform
accuracy is intractable”. In: arXiv preprint arXiv:2205.13531 (2022).

[69] J. Berner et al. “The Modern Mathematics of Deep Learning”. In: Mathematical
Aspects of Deep Learning. Ed. by P. Grohs and G. Kutyniok. Cambridge: Cam-
bridge University Press, 2022, pp. 1–111.

[70] A. Fawzi, M. Balog, et al. “Discovering faster matrix multiplication algorithms
with reinforcement learning”. In: Nature 610 (2022), pp. 47–53.

[71] S. Mishra and R. Molinaro. “Estimates on the generalization error of physics-
informed neural networks for approximating PDEs”. In: IMA Journal of Numerical
Analysis 43(1) (2022), pp. 1–43.

[72] R. Rombach et al. “High-Resolution Image Synthesis With Latent Diffusion Mod-
els”. In: Conference on Computer Vision and Pattern Recognition (2022), pp. 10684–
10695.

[73] T. Ryck and S. Mishra. “Error analysis for physics-informed neural networks
(PINNs) approximating Kolmogorov PDEs”. In: Advances in Computational Math-
ematics 48 (2022).

[74] R. Thoppilan et al. “Lamda: Language models for dialog applications”. In: arXiv
preprint arXiv:2201.08239 (2022).

80

